Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(3): 488-499.e5, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38086374

RESUMEN

Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.


Asunto(s)
Dopamina , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
2.
Behav Brain Res ; 411: 113376, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34023307

RESUMEN

The central nucleus of amygdala (CeA) mediates positively-valenced reward motivation as well as negatively-valenced fear. Optogenetic or neurochemical stimulation of CeA circuitry can generate intense incentive motivation to pursue and consume a paired natural food, sex, or addictive drug reward, and even create maladaptive 'wanting what hurts' such as attraction to a shock rod. Evidence indicates CeA stimulations selectively amplify incentive motivation ('wanting') but not hedonic impact ('liking') of the same reward. Further, valence flips can occur for CeA contributions to motivational salience. That is, CeA stimulation can promote either incentive motivation or fearful motivation, even in the same individual, depending on situation. These findings may carry implications for understanding CeA roles in neuropsychiatric disorders involving aberrant motivational salience, ranging from addiction to paranoia and anxiety disorders.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Emociones/fisiología , Motivación/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Conducta Adictiva , Núcleo Amigdalino Central/metabolismo , Señales (Psicología) , Miedo , Humanos , Recompensa
3.
Neuron ; 107(5): 864-873.e4, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32610039

RESUMEN

Like ventral tegmental area (VTA) dopamine (DA) neurons, VTA glutamate neuron activity can support positive reinforcement. However, a subset of VTA neurons co-release DA and glutamate, and DA release might be responsible for behavioral reinforcement induced by VTA glutamate neuron activity. To test this, we used optogenetics to stimulate VTA glutamate neurons in which tyrosine hydroxylase (TH), and thus DA biosynthesis, was conditionally ablated using either floxed Th mice or viral-based CRISPR/Cas9. Both approaches led to loss of TH expression in VTA glutamate neurons and loss of DA release from their distal terminals in nucleus accumbens (NAc). Despite loss of the DA signal, optogenetic activation of VTA glutamate cell bodies or axon terminals in NAc was sufficient to support reinforcement. These results suggest that glutamate release from VTA is sufficient to promote reinforcement independent of concomitant DA co-release, establishing a non-DA mechanism by which VTA activity can support reward-seeking behaviors.


Asunto(s)
Ácido Glutámico/metabolismo , Motivación/fisiología , Neuronas/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Conducta Animal/fisiología , Dopamina/metabolismo , Ratones , Optogenética , Refuerzo en Psicología , Recompensa
4.
Nat Commun ; 11(1): 2716, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483118

RESUMEN

How do brain mechanisms create maladaptive attractions? Here intense maladaptive attractions are created in laboratory rats by pairing optogenetic channelrhodopsin (ChR2) stimulation of central nucleus of amygdala (CeA) in rats with encountering either sucrose, cocaine, or a painful shock-delivering object. We find that pairings make the respective rats pursue either sucrose exclusively, or cocaine exclusively, or repeatedly self-inflict shocks. CeA-induced maladaptive attractions, even to the painful shock-rod, recruit mesocorticolimbic incentive-related circuitry. Shock-associated cues also gain positive incentive value and are pursued. Yet the motivational effects of paired CeA stimulation can be reversed to negative valence in a Pavlovian fear learning situation, where CeA ChR2 pairing increases defensive reactions. Finally, CeA ChR2 valence can be switched to neutral by pairing with innocuous stimuli. These results reveal valence plasticity and multiple modes for motivation via mesocorticolimbic circuitry under the control of CeA activation.


Asunto(s)
Encéfalo/fisiología , Núcleo Amigdalino Central/fisiología , Channelrhodopsins/fisiología , Dolor/fisiopatología , Recompensa , Animales , Núcleo Amigdalino Central/metabolismo , Channelrhodopsins/metabolismo , Cocaína/administración & dosificación , Señales (Psicología) , Femenino , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Motivación/fisiología , Optogenética/métodos , Ratas Sprague-Dawley , Sacarosa/administración & dosificación
5.
Curr Opin Behav Sci ; 22: 59-69, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29503841

RESUMEN

Affective neuroscience research has revealed that reward contains separable components of 'liking', 'wanting', and learning. Here we focus on current 'liking' and 'wanting' findings and applications to clinical disorders. 'Liking' is the hedonic impact derived from a pleasant experience, and is amplified by opioid and related signals in discrete sites located in limbic-related brain areas. 'Wanting' refers to incentive salience, a motivation process for reward, and is mediated by larger systems involving mesocorticolimbic dopamine. Deficits in incentive salience may contribute to avolitional features of depression and related disorders, whereas deficits in hedonic impact may produce true anhedonia. Excesses in incentive salience, on the other hand, can lead to addiction, especially when narrowly focused on a particular target. Finally, a fearful form of motivational salience may even contribute to some paranoia symptoms of schizophrenia and related disorders.

6.
J Neurosci ; 37(35): 8330-8348, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28751460

RESUMEN

Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target.SIGNIFICANCE STATEMENT In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central nucleus of amygdala (CeA) optogenetic stimulation with one option for earning intravenous cocaine makes that option almost the exclusive focus of intense pursuit and consumption. CeA stimulation also elevated the effort cost rats were willing to pay for cocaine and made associated cues become intensely attractive. However, we also show that CeA laser had no reinforcing properties at all when given alone for the same rats. Therefore, CeA laser pairing makes its associated cocaine option and cues become powerfully attractive in a nearly addictive fashion.


Asunto(s)
Conducta Adictiva/fisiopatología , Trastornos Relacionados con Cocaína/fisiopatología , Estimulación Eléctrica , Motivación , Optogenética/métodos , Recompensa , Amígdala del Cerebelo , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Refuerzo en Psicología , Autoadministración
7.
J Neurosci ; 34(50): 16567-80, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505310

RESUMEN

Choosing one reward above another is important for achieving adaptive life goals. Yet hijacked into excessive intensity in disorders such as addiction, single-minded pursuit becomes maladaptive. Here, we report that optogenetic channelrhodopsin stimulation of neurons in central nucleus of amygdala (CeA), paired with earning a particular sucrose reward in rats, amplified and narrowed incentive motivation to that single reward target. Therefore, CeA rats chose and intensely pursued only the laser-paired sucrose reward while ignoring an equally good sucrose alternative. In contrast, reward-paired stimulation of basolateral amygdala did not hijack choice. In a separate measure of incentive motivation, CeA stimulation also increased the progressive ratio breakpoint or level of effort exerted to obtain sucrose reward. However, CeA stimulation by itself failed to support behavioral self-stimulation in the absence of any paired external food reward, suggesting that CeA photo-excitation specifically transformed the value of its external reward (rather than adding an internal reinforcement state). Nor did CeA stimulation by itself induce any aversive state that motivated escape. Finally, CeA stimulation also failed to enhance 'liking' reactions elicited by sucrose taste and did not simply increase the general motivation to eat. This pattern suggests that CeA photo-excitation specifically enhances and narrows incentive motivation to pursue an associated external reward at the expense of another comparable reward.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Motivación/fisiología , Optogenética/métodos , Recompensa , Animales , Conducta Alimentaria/fisiología , Femenino , Ratas , Ratas Sprague-Dawley , Autoadministración/métodos , Sacarosa/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA