RESUMEN
BACKGROUND: Altering a protein's function by changing its sequence allows natural proteins to be converted into useful molecular tools. Current protein engineering methods are limited by a lack of high throughput physical or computational tests that can accurately predict protein activity under conditions relevant to its final application. Here we describe a new synthetic biology approach to protein engineering that avoids these limitations by combining high throughput gene synthesis with machine learning-based design algorithms. RESULTS: We selected 24 amino acid substitutions to make in proteinase K from alignments of homologous sequences. We then designed and synthesized 59 specific proteinase K variants containing different combinations of the selected substitutions. The 59 variants were tested for their ability to hydrolyze a tetrapeptide substrate after the enzyme was first heated to 68 degrees C for 5 minutes. Sequence and activity data was analyzed using machine learning algorithms. This analysis was used to design a new set of variants predicted to have increased activity over the training set, that were then synthesized and tested. By performing two cycles of machine learning analysis and variant design we obtained 20-fold improved proteinase K variants while only testing a total of 95 variant enzymes. CONCLUSION: The number of protein variants that must be tested to obtain significant functional improvements determines the type of tests that can be performed. Protein engineers wishing to modify the property of a protein to shrink tumours or catalyze chemical reactions under industrial conditions have until now been forced to accept high throughput surrogate screens to measure protein properties that they hope will correlate with the functionalities that they intend to modify. By reducing the number of variants that must be tested to fewer than 100, machine learning algorithms make it possible to use more complex and expensive tests so that only protein properties that are directly relevant to the desired application need to be measured. Protein design algorithms that only require the testing of a small number of variants represent a significant step towards a generic, resource-optimized protein engineering process.
Asunto(s)
Inteligencia Artificial , Diseño de Fármacos , Endopeptidasa K/química , Endopeptidasa K/metabolismo , Escherichia coli/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencia de Aminoácidos , Endopeptidasa K/genética , Escherichia coli/genética , Genes Sintéticos/genética , Datos de Secuencia Molecular , Mutación , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-ActividadRESUMEN
We investigate the following data mining problem from computer-aided drug design: From a large collection of compounds, find those that bind to a target molecule in as few iterations of biochemical testing as possible. In each iteration a comparatively small batch of compounds is screened for binding activity toward this target. We employed the so-called "active learning paradigm" from Machine Learning for selecting the successive batches. Our main selection strategy is based on the maximum margin hyperplane-generated by "Support Vector Machines". This hyperplane separates the current set of active from the inactive compounds and has the largest possible distance from any labeled compound. We perform a thorough comparative study of various other selection strategies on data sets provided by DuPont Pharmaceuticals and show that the strategies based on the maximum margin hyperplane clearly outperform the simpler ones.