Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 4(5): 606-19, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24535670

RESUMEN

Activating mutations in the EGF receptor (EGFR) are associated with clinical responsiveness to EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib. However, resistance eventually arises, often due to a second EGFR mutation, most commonly T790M. Through a genome-wide siRNA screen in a human lung cancer cell line and analyses of murine mutant EGFR-driven lung adenocarcinomas, we found that erlotinib resistance was associated with reduced expression of neurofibromin, the RAS GTPase-activating protein encoded by the NF1 gene. Erlotinib failed to fully inhibit RAS-ERK signaling when neurofibromin levels were reduced. Treatment of neurofibromin-deficient lung cancers with a MAP-ERK kinase (MEK) inhibitor restored sensitivity to erlotinib. Low levels of NF1 expression were associated with primary and acquired resistance of lung adenocarcinomas to EGFR TKIs in patients. These findings identify a subgroup of patients with EGFR-mutant lung adenocarcinoma who might benefit from combination therapy with EGFR and MEK inhibitors.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Clorhidrato de Erlotinib/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neurofibromina 1/genética , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Clorhidrato de Erlotinib/uso terapéutico , Humanos , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , Ratones , Neoplasias Experimentales , Neurofibromina 1/metabolismo , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico
2.
Clin Cancer Res ; 19(13): 3533-44, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23674493

RESUMEN

PURPOSE: Endometrioid endometrial cancers (EEC) frequently harbor coexisting mutations in phosphoinositide 3-kinase (PI3K) pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110ß signaling for survival. EXPERIMENTAL DESIGN: Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and mitogen-activated protein kinase (MAPK) signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α, and p110ß isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and RAF inhibitors. RNA interference (RNAi) was used to assess effects of KRAS silencing in EEC cells. RESULTS: EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2 of 6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110ß inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66 was a decrease in cell viability observed. CONCLUSIONS: Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA- and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110ß alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required.


Asunto(s)
Neoplasias Endometriales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Neoplasias Endometriales/genética , Femenino , Silenciador del Gen , Humanos , Indazoles/farmacología , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Proteínas ras/genética , Proteínas ras/metabolismo
3.
Cell Res ; 22(8): 1227-45, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22613949

RESUMEN

Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Alelos , Apoptosis , Ácidos Borónicos/farmacología , Bortezomib , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , ADN-Topoisomerasas de Tipo I/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Pirazinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Activación Transcripcional , Proteínas ras/genética , Gemcitabina
4.
Cell ; 129(5): 957-68, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17540175

RESUMEN

Ras proteins signal through direct interaction with a number of effector enzymes, including type I phosphoinositide (PI) 3-kinases. Although the ability of Ras to control PI 3-kinase has been well established in manipulated cell culture models, evidence for a role of the interaction of endogenous Ras with PI 3-kinase in normal and malignant cell growth in vivo has been lacking. Here we generate mice with mutations in the Pi3kca gene encoding the catalytic p110alpha isoform that block its interaction with Ras. Cells from these mice show proliferative defects and selective disruption of signaling from growth factors to PI 3-kinase. The mice display defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. Most importantly, they are highly resistant to endogenous Ras oncogene-induced tumorigenesis. The interaction of Ras with p110alpha is thus required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Anomalías Linfáticas/genética , Anomalías Linfáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/genética , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Alineación de Secuencia , Transducción de Señal
5.
Cancer Cell ; 11(6): 498-512, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17560332

RESUMEN

Cytotoxic drug resistance is a major cause of cancer treatment failure. We report an RNA interference screen to identify genes influencing sensitivity of different cancer cell types to chemotherapeutic agents. A set of genes whose targeting leads to resistance to paclitaxel is identified, many of which are involved in the spindle assembly checkpoint. Silencing these genes attenuates paclitaxel-induced mitotic arrest and induces polyploidy in the absence of drug. We also identify a ceramide transport protein, COL4A3BP or CERT, whose downregulation sensitizes cancer cells to multiple cytotoxic agents, potentiating endoplasmic reticulum stress. COL4A3BP expression is increased in drug-resistant cell lines and in residual tumor following paclitaxel treatment of ovarian cancer, suggesting that it could be a target for chemotherapy-resistant cancers.


Asunto(s)
Ceramidas/metabolismo , Resistencia a Antineoplásicos , Mitosis , Paclitaxel/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inestabilidad Cromosómica , Regulación hacia Abajo , Resistencia a Múltiples Medicamentos/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Paclitaxel/uso terapéutico , Poliploidía , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/farmacología
6.
Mol Cell ; 20(5): 673-85, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16337592

RESUMEN

The ability of activated Ras to induce growth arrest of human ovarian surface epithelial (HOSE) cells via induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) has been used to screen for Ras pathway signaling components using a library of RNA interference (RNAi) vectors targeting the kinome. Two known Ras-regulated kinases were identified, phosphoinositide 3-kinase p110alpha and ribosomal protein S6 kinase p70(S6K1), plus the MAP kinase kinase kinase kinase MINK, which had not previously been implicated in Ras signaling. MINK is activated after Ras induction via a mechanism involving reactive oxygen species and mediates stimulation of the stress-activated protein kinase p38 MAPK downstream of the Raf/ERK pathway. p38 MAPK activation is essential for Ras-induced p21(WAF1/CIP1) upregulation and cell cycle arrest. MINK is thus a distal target of Ras signaling in the induction of a growth-arrested, senescent-like phenotype that may act to oppose oncogenic transformation in HOSE cells.


Asunto(s)
Células Epiteliales/enzimología , Neoplasias Ováricas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/fisiología , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Quinasas Quinasa Quinasa PAM , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/farmacología , Interferencia de ARN/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Cancer Cell ; 7(6): 521-32, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15950902

RESUMEN

CUTL1, also known as CDP, Cut, or Cux-1, is a homeodomain transcriptional regulator known to be involved in development and cell cycle progression. Here we report that CUTL1 activity is associated with increased migration and invasiveness in numerous tumor cell lines, both in vitro and in vivo. Furthermore, we identify CUTL1 as a transcriptional target of transforming growth factor beta and a mediator of its promigratory effects. CUTL1 activates a transcriptional program regulating genes involved in cell motility, invasion, and extracellular matrix composition. CUTL1 expression is significantly increased in high-grade carcinomas and is inversely correlated with survival in breast cancer. This suggests that CUTL1 plays a central role in coordinating a gene expression program associated with cell motility and tumor progression.


Asunto(s)
Movimiento Celular/fisiología , Invasividad Neoplásica/patología , Neoplasias/patología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Invasividad Neoplásica/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Bicatenario/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Proteína Smad4 , Transactivadores/metabolismo , Factores de Transcripción , Transcripción Genética/efectos de los fármacos , Transfección , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Mol Biol Cell ; 15(7): 3450-63, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15090615

RESUMEN

The Raf protein kinases are major effectors of Ras GTPases and key components of the transcriptional response to serum factors, acting at least in part through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. It has recently been suggested that Raf also may trigger other as yet uncharacterized signaling pathways. Here, we have used cDNA microarrays to dissect changes in gene expression induced by activation of inducible c-Raf-1 constructs in human mammary epithelial and ovarian epithelial cells. The majority of Raf-induced transcriptional responses are shown to be blocked by pharmacological inhibition of the Raf substrate mitogen-activated protein kinase kinase, indicating that potential mitogen-activated protein kinase kinase-independent Raf signaling pathways have no significant influence on gene expression. In addition, we used epidermal growth factor receptor inhibitory drugs to address the contribution of autocrine signaling by Raf-induced EGF family proteins to the Raf transcriptional response. At least one-half of the transcription induced by Raf activation requires epidermal growth factor (EGF) receptor function The EGF receptor-independent component of the Raf transcriptional response is entirely up-regulation of gene expression, whereas the EGF receptor-dependent component is an equal mixture of up- and down-regulation. The use of transcriptional profiling in this way allows detailed analysis of the architecture of signaling pathways to be undertaken.


Asunto(s)
Comunicación Autocrina , Regulación de la Expresión Génica/genética , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Línea Celular , Activación Enzimática/genética , Receptores ErbB/antagonistas & inhibidores , Perfilación de la Expresión Génica , Humanos , Hidroxitestosteronas/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-raf/genética , Transcripción Genética
9.
Mol Cell Biol ; 23(21): 7600-10, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14560006

RESUMEN

The mitochondrial release of cytochrome c and Smac/DIABLO has been implicated in the activation of apoptosis in response to cell stress. Smac promotes cytochrome c-induced activation of caspases by sequestering the inhibitor of apoptosis protein (IAP) family of potent caspase suppressors. Differential release from mitochondria of cytochrome c and Smac can occur, but the underlying mechanism and physiological significance of this are unclear. Here we show that the mechanism by which fibroblast growth factor 2 (FGF-2) protects small cell lung cancer (SCLC) cells from etoposide-induced cell death involves inhibition of Smac release but not of cytochrome c release. This process is MEK dependent and correlates with an increased expression of XIAP and cellular IAP-1, mediated principally through translational regulation. Exogenous expression of XIAP is sufficient to inhibit caspase 9 activation, Smac release, and cell death induced by etoposide. Prevention of the FGF-2-promoted increase in levels of functional IAPs by RNA interference or the cell-permeant Smac amino-terminal peptide blocked FGF-2-induced protection. FGF-2 can thus protect SCLC cells from chemotherapeutic drugs by modulating IAP levels via posttranscriptional regulation, providing a mechanism for postmitochondrial survival signaling by the MEK/mitogen-activated protein kinase pathway.


Asunto(s)
Apoptosis/fisiología , Carcinoma de Células Pequeñas/metabolismo , Proteínas Portadoras/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas Reguladoras de la Apoptosis , Carcinoma de Células Pequeñas/patología , Caspasas/metabolismo , Muerte Celular/fisiología , Línea Celular Tumoral , Medio de Cultivo Libre de Suero , Citocromos c/metabolismo , Activación Enzimática , Etopósido/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Inhibidoras de la Apoptosis , Péptidos y Proteínas de Señalización Intracelular , MAP Quinasa Quinasa 1 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Proteína Inhibidora de la Apoptosis Ligada a X
10.
J Biol Chem ; 278(5): 3251-6, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12435725

RESUMEN

In normal epithelial cells, transforming growth factor-beta (TGF-beta) typically causes growth arrest in the G(1) phase of the cell cycle and may eventually lead to apoptosis. However, transformed cells lose these inhibitory responses and often instead show an increase in malignant character following TGF-beta treatment. In the canine kidney-derived epithelial cell line, MDCK, synergism between activation of the Raf/MAPK pathway and the resulting autocrine production of TGF-beta triggers transition from an epithelial to a mesenchymal phenotype. During this process, these cells become refractive to TGF-beta-induced cell cycle arrest and apoptosis. TGF-beta signals are primarily transduced to the nucleus through complexes of receptor-regulated Smads, Smad2 and Smad3 with the common mediator Smad, Smad4. Here we show that the transition from an epithelial to mesenchymal phenotype is accompanied by gradual down-regulation of expression of Smad3. Restoration of Smad3 to previous levels of expression restores the cell cycle arrest induced by TGF-beta without reverting the cells to an epithelial phenotype or impacting on the MAPK pathway. Regulation of apoptosis is not affected by Smad3 levels. These data attribute to Smad3 a critical role in the control of cell proliferation by TGF-beta, which is lost following an epithelial to mesenchymal transition.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/fisiología , Mesodermo/citología , Transactivadores/genética , Factor de Crecimiento Transformador beta/farmacología , Urotelio/citología , Animales , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular , Perros , Regulación de la Expresión Génica/efectos de los fármacos , Riñón , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Fenotipo , Proteína smad3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...