Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(7): 851-861, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37055191

RESUMEN

Advancement of endogenous biomarkers for drug transporters as a tool for assessing drug-drug interactions (DDIs) depends on initial identification of biomarker candidates and relies heavily on biomarker validation and its response to reference inhibitors in vivo. To identify endogenous biomarkers of breast cancer resistance protein (BCRP), we applied metabolomic approaches to profile plasma from Bcrp-/-, multidrug resistance protein (Mdr)1a/1b-/-, and Bcrp/Mdr1a/1b-/- mice. Approximately 130 metabolites were significantly altered in Bcrp and P-glycoprotein (P-gp) knockout mice, indicating numerous metabolite-transporter interactions. We focused on BCRP-specific substrates and identified riboflavin, which was significantly elevated in the plasma of Bcrp single- and Bcrp/P-gp double- but not P-gp single-knockout mice. Dual BCRP/P-gp inhibitor elacridar caused a dose-dependent increase of the area under the plasma concentration-time curve (AUC) of riboflavin in mice (1.51- and 1.93-fold increases by 30 and 150 mg/kg elacridar, respectively). In three cynomolgus monkeys, we observed approximately 1.7-fold increases in the riboflavin concentrations caused by ML753286 (10 mg/kg), which correlated well with the increase of sulfasalazine, a known BCRP probe in monkeys. However, the BCRP inhibitor had no effect on isobutyryl carnitine, arginine, or 2-arachidonoyl glycerol levels. Additionally, clinical studies on healthy volunteers indicated low intrasubject and intermeal variability of plasma riboflavin concentrations. In vitro experiments using membrane vesicles demonstrated riboflavin as a select substrate of monkey and human BCRP over P-gp. Collectively, this proof-of-principle study indicates that riboflavin is a suitable endogenous probe for BCRP activity in mice and monkeys and that future investigation of riboflavin as a blood-based biomarker of human BCRP is warranted. SIGNIFICANCE STATEMENT: Our results identified riboflavin as an endogenous biomarker candidate of BCRP. Its selectivity, sensitivity, and predictivity regarding BCRP inhibition have been explored. The findings of this study highlight riboflavin as an informative BCRP plasma biomarker in animal models. The utility of this biomarker requires further validation by evaluating the effects of BCRP inhibitors of different potencies on riboflavin plasma concentrations in humans. Ultimately, riboflavin may shed light on the risk assessment of BCRP DDIs in early clinical trials.


Asunto(s)
Encéfalo , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Encéfalo/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ratones Noqueados , Biomarcadores/metabolismo , Interacciones Farmacológicas , Neoplasias de la Mama/metabolismo
2.
J Med Chem ; 64(3): 1454-1480, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33492963

RESUMEN

Sphingosine-1-phosphate (S1P) binds to a family of sphingosine-1-phosphate G-protein-coupled receptors (S1P1-5). The interaction of S1P with these S1P receptors has a fundamental role in many physiological processes in the vascular and immune systems. Agonist-induced functional antagonism of S1P1 has been shown to result in lymphopenia. As a result, agonists of this type hold promise as therapeutics for autoimmune disorders. The previously disclosed differentiated S1P1 modulator BMS-986104 (1) exhibited improved preclinical cardiovascular and pulmonary safety profiles as compared to earlier full agonists of S1P1; however, it demonstrated a long pharmacokinetic half-life (T1/2 18 days) in the clinic and limited formation of the desired active phosphate metabolite. Optimization of this series through incorporation of olefins, ethers, thioethers, and glycols into the alkyl side chain afforded an opportunity to reduce the projected human T1/2 and improve the formation of the active phosphate metabolite while maintaining efficacy as well as the improved safety profile. These efforts led to the discovery of 12 and 24, each of which are highly potent, biased agonists of S1P1. These compounds not only exhibited shorter in vivo T1/2 in multiple species but are also projected to have significantly shorter T1/2 values in humans when compared to our first clinical candidate. In models of arthritis, treatment with 12 and 24 demonstrated robust efficacy.


Asunto(s)
Compuestos Bicíclicos con Puentes/síntesis química , Compuestos Bicíclicos con Puentes/farmacología , Proproteína Convertasas/efectos de los fármacos , Serina Endopeptidasas/efectos de los fármacos , Animales , Artritis Experimental/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Biotransformación , Compuestos Bicíclicos con Puentes/efectos adversos , Líquido del Lavado Bronquioalveolar , Quimiotaxis de Leucocito/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/patología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Ratas , Ratas Endogámicas Lew , Relación Estructura-Actividad
3.
Data Brief ; 33: 106591, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33318978

RESUMEN

In this article, we provide four data sets for an industrial Chinese Hamster Ovary (CHO) cell line producing antibodies during a 14-day bioreactor run. This cell line was selected for further evaluation because of its significant titer loss as the cells were passaged over time. Four conditions that differed in cell bank ages were run for this dataset. Specifically, cells were passaged to passage 12, 21, 25, and 37 and then used in this experiment. Once the run commenced the following datasets were gathered: 1). Glycosylation data for each reactor 2). Size Exclusion Chromatography (SEC) data for the antibodies produced which allowed for the identification of high and low molecular weight species in the samples (N-Glycan and SEC data was taken on day 14 only). 3/4). Metabolites levels measured using Nuclear Magnetic Resonance (NMR) and liquid chromatography-mass spectroscopy (LC-MS) for all reactors over the time course of days 1, 4, 6, 8, 12, and 14. We also provide a graph of the glutamine levels for cells of different ages as an example of the utility of the data. These metabolomics data provide relative amounts for 36 metabolites (NMR) and 109 metabolites (LC-MS) over the 14-day time course. These data were collected in connection with a co-submitted paper [1].

4.
J Med Chem ; 63(22): 13913-13950, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33155811

RESUMEN

A series of tetrahydroisoquinoline-based benzodiazepine dimers were synthesized and tested for in vitro cytotoxicity against a panel of cancer cell lines. Structure-activity relationship investigation of various spacers guided by molecular modeling studies helped to identify compounds with picomolar activity. Payload 17 was conjugated to anti-mesothelin and anti-fucosylated monosialotetrahexosylganglioside (FucGM1) antibodies using lysosome-cleavable valine-citrulline dipeptide linkers via heterogeneous lysine conjugation and bacterial transglutaminase-mediated site-specific conjugation. In vitro, these antibody drug conjugates (ADCs) exhibited significant cytotoxic and target-mediated selectivity on human cancer cell lines. The pharmacokinetics and efficacy of these ADCs were further evaluated in gastric and lung cancer xenograft models in mice. Consistent pharmacokinetic profiles, high target specificity, and robust antitumor activity were observed in these models after a single dose of the ADC-46 (0.02 µmol/kg).


Asunto(s)
Anticuerpos Monoclonales/química , Antineoplásicos/farmacología , Benzodiazepinas/química , Diseño de Fármacos , Inmunoconjugados/farmacología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Gástricas/tratamiento farmacológico , Tetrahidroisoquinolinas/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Antineoplásicos/química , Apoptosis , Benzodiazepinas/metabolismo , Proliferación Celular , Femenino , Gangliósido G(M1)/análogos & derivados , Gangliósido G(M1)/inmunología , Proteínas Ligadas a GPI/inmunología , Humanos , Inmunoconjugados/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mesotelina , Ratones , Ratones SCID , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Gástricas/patología , Relación Estructura-Actividad , Tetrahidroisoquinolinas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eng Life Sci ; 20(3-4): 112-125, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32874175

RESUMEN

Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.

6.
Anal Chem ; 91(13): 8443-8452, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31247719

RESUMEN

We report a novel immunocapture (IC)-LC-MS/MS methodology to directly measure real time in vivo receptor occupancy (RO) for a covalent binding drug in blood lysate. A small molecule quencher was added immediately after sample collection to convert the free receptor to a quencher-bound receptor (QB-R) which was measured with the drug-bound receptor (DB-R) simultaneously by LC-MS/MS after immunocapture enrichment, followed by trypsin digestion. Addition of the quencher is necessary to prevent the free receptor from ex vivo binding with the drug. The real time RO was calculated based on the concentrations of DB-R and the free receptor (which is now QB-R) that were obtained from each sample. This strategy has been successfully applied to the measurement of the RO for Bruton's tyrosine kinase (BTK) in the blood lysate of monkeys after dosing with branebrutinib (BMS-986195), a covalent BTK inhibitor being evaluated to treat rheumatoid arthritis. A custom-made quencher, which is more reactive to BTK than branebrutinib, was added in excess amount to bind with all available free BTK to form quencher-bound BTK (QB-BTK) during blood sample collection. To measure a wide range of % BTK RO, including those of <5% or >95%, the required LLOQ at 0.125 nM for QB-BTK and 0.250 nM for drug-bound BTK (DB-BTK) in blood lysate were successfully achieved by using this IC-LC-MS/MS strategy. This proof-of-concept assay demonstrated its suitability with high throughput for real time in vivo BTK RO measurement as a pharmacodynamic (PD) biomarker for clinical drug development.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Anticuerpos Inmovilizados/inmunología , Biomarcadores/metabolismo , Cromatografía Liquida/métodos , Inhibidores de Proteínas Quinasas/metabolismo , Receptores de Droga/metabolismo , Espectrometría de Masas en Tándem/métodos , Agammaglobulinemia Tirosina Quinasa/inmunología , Animales , Anticuerpos Inmovilizados/metabolismo , Bioensayo , Macaca fascicularis
7.
PLoS One ; 14(3): e0212670, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30913212

RESUMEN

Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.


Asunto(s)
Inmunidad Celular , Vigilancia Inmunológica , Linfocitos/inmunología , Neoplasias Experimentales/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Linfocitos/patología , Ratones , Ratones Mutantes , Neoplasias Experimentales/genética , Mutación Puntual , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética
8.
J Med Chem ; 62(5): 2265-2285, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30785748

RESUMEN

Recently, our research group reported the identification of BMS-986104 (2) as a differentiated S1P1 receptor modulator. In comparison to fingolimod (1), a full agonist of S1P1 currently marketed for the treatment of relapse remitting multiple sclerosis (RRMS), 2 offers several potential advantages having demonstrated improved safety multiples in preclinical evaluations against undesired pulmonary and cardiovascular effects. In clinical trials, 2 was found to exhibit a pharmacokinetic half-life ( T1/2) longer than that of 1, as well as a reduced formation of the phosphate metabolite that is required for activity against S1P1. Herein, we describe our efforts to discover highly potent, partial agonists of S1P1 with a shorter T1/2 and increased in vivo phosphate metabolite formation. These efforts culminated in the discovery of BMS-986166 (14a), which was advanced to human clinical evaluation. The pharmacokinetic/pharmacodynamic (PK/PD) relationship as well as pulmonary and cardiovascular safety assessments are discussed. Furthermore, efficacy of 14a in multiple preclinical models of autoimmune diseases are presented.


Asunto(s)
Ensayos Clínicos como Asunto , Naftalenos/farmacología , Receptores de Esfingosina-1-Fosfato/agonistas , Tetrahidronaftalenos/farmacología , Animales , Líquido del Lavado Bronquioalveolar , Relación Dosis-Respuesta a Droga , Semivida , Humanos , Naftalenos/química , Naftalenos/farmacocinética , Ratas , Ratas Endogámicas Lew , Tetrahidronaftalenos/química , Tetrahidronaftalenos/farmacocinética
9.
J Med Chem ; 59(24): 11138-11147, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28002964

RESUMEN

We describe a highly efficient route for the synthesis of 4a (BMS-986104). A key step in the synthesis is the asymmetric hydroboration of trisubstituted alkene 6. Particularly given the known difficulties involved in this type of transformation (6 → 7), the current methodology provides an efficient approach to prepare this class of compounds. In addition, we disclose the efficacy of 4a in a mouse EAE model, which is comparable to 4c (FTY720). Mechanistically, 4a exhibited excellent remyelinating effects on lysophosphatidylcholine (LPC) induced demyelination in a three-dimensional brain cell culture assay.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Naftalenos/farmacología , Receptores de Lisoesfingolípidos/agonistas , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Humanos , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Relación Estructura-Actividad
10.
J Med Chem ; 59(21): 9837-9854, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27726358

RESUMEN

Fingolimod (1) is the first approved oral therapy for the treatment of relapsing remitting multiple sclerosis. While the phosphorylated metabolite of fingolimod was found to be a nonselective S1P receptor agonist, agonism specifically of S1P1 is responsible for the peripheral blood lymphopenia believed to be key to its efficacy. Identification of modulators that maintain activity on S1P1 while sparing activity on other S1P receptors could offer equivalent efficacy with reduced liabilities. We disclose in this paper a ligand-based drug design approach that led to the discovery of a series of potent tricyclic agonists of S1P1 with selectivity over S1P3 and were efficacious in a pharmacodynamic model of suppression of circulating lymphocytes. Compound 10 had the desired pharmacokinetic (PK) and pharmacodynamic (PD) profile and demonstrated maximal efficacy when administered orally in a rat adjuvant arthritis model.


Asunto(s)
Diseño de Fármacos , Clorhidrato de Fingolimod/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Receptores de Lisoesfingolípidos/agonistas , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Perros , Relación Dosis-Respuesta a Droga , Clorhidrato de Fingolimod/administración & dosificación , Clorhidrato de Fingolimod/química , Adyuvante de Freund/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/química , Ligandos , Linfocitos/efectos de los fármacos , Macaca fascicularis , Masculino , Ratones , Estructura Molecular , Mycobacterium/efectos de los fármacos , Ratas , Ratas Endogámicas Lew , Relación Estructura-Actividad , Distribución Tisular
11.
J Med Chem ; 59(13): 6248-64, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27309907

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates a multitude of physiological processes such as lymphocyte trafficking, cardiac function, vascular development, and inflammation. Because of the ability of S1P1 receptor agonists to suppress lymphocyte egress, they have great potential as therapeutic agents in a variety of autoimmune diseases. In this article, the discovery of selective, direct acting S1P1 agonists utilizing an ethanolamine scaffold containing a terminal carboxylic acid is described. Potent S1P1 agonists such as compounds 18a and 19a which have greater than 1000-fold selectivity over S1P3 are described. These compounds efficiently reduce blood lymphocyte counts in rats through 24 h after single doses of 1 and 0.3 mpk, respectively. Pharmacodynamic properties of both compounds are discussed. Compound 19a was further studied in two preclinical models of disease, exhibiting good efficacy in both the rat adjuvant arthritis model (AA) and the mouse experimental autoimmune encephalomyelitis model (EAE).


Asunto(s)
Etanolamina/química , Etanolamina/farmacología , Linfocitos/efectos de los fármacos , Receptores de Lisoesfingolípidos/agonistas , Animales , Artritis/tratamiento farmacológico , Perros , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Etanolamina/farmacocinética , Etanolamina/uso terapéutico , Femenino , Haplorrinos , Humanos , Recuento de Linfocitos , Linfocitos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Endogámicas Lew , Receptores de Lisoesfingolípidos/metabolismo , Relación Estructura-Actividad
12.
PLoS One ; 11(6): e0157111, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27310468

RESUMEN

A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability.


Asunto(s)
Metabolómica , Estrés Oxidativo/genética , Ácidos Siálicos/metabolismo , Transcriptoma/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Perfilación de la Expresión Génica , Glucosa/metabolismo , Glucólisis/genética , Glicosilación , Manosa/genética , Manosa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxígeno/metabolismo
13.
ACS Med Chem Lett ; 7(3): 283-8, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26985316

RESUMEN

Clinical validation of S1P receptor modulation therapy was achieved with the approval of fingolimod (Gilenya, 1) as the first oral therapy for relapsing remitting multiple sclerosis. However, 1 causes a dose-dependent reduction in the heart rate (bradycardia), which occurs within hours after first dose. We disclose the identification of clinical compound BMS-986104 (3d), a novel S1P1 receptor modulator, which demonstrates ligand-biased signaling and differentiates from 1 in terms of cardiovascular and pulmonary safety based on preclinical pharmacology while showing equivalent efficacy in a T-cell transfer colitis model.

14.
J Med Chem ; 59(6): 2820-40, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26924461

RESUMEN

Sphingosine 1-phosphate (S1P) is the endogenous ligand for the sphingosine 1-phosphate receptors (S1P1-5) and evokes a variety of cellular responses through their stimulation. The interaction of S1P with the S1P receptors plays a fundamental physiological role in a number of processes including vascular development and stabilization, lymphocyte migration, and proliferation. Agonism of S1P1, in particular, has been shown to play a significant role in lymphocyte trafficking from the thymus and secondary lymphoid organs, resulting in immunosuppression. This article will detail the discovery and SAR of a potent and selective series of isoxazole based full agonists of S1P1. Isoxazole 6d demonstrated impressive efficacy when administered orally in a rat model of arthritis and in a mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis.


Asunto(s)
Isoxazoles/síntesis química , Isoxazoles/farmacología , Lisofosfolípidos/agonistas , Esfingosina/análogos & derivados , Animales , Artritis Experimental/tratamiento farmacológico , Células CHO , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Descubrimiento de Drogas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Humanos , Inmunosupresores/síntesis química , Inmunosupresores/farmacología , Sistema Linfático/citología , Sistema Linfático/efectos de los fármacos , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Endogámicas Lew , Esfingosina/agonistas , Relación Estructura-Actividad , Timo/citología , Timo/efectos de los fármacos
15.
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26819663

RESUMEN

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

16.
Anal Bioanal Chem ; 405(12): 4283-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23430183

RESUMEN

PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Polietilenglicoles/química , Animales , Espectrometría de Masas/métodos , Ratones , Peso Molecular , Polietilenglicoles/aislamiento & purificación , Suero/química
17.
J Immunol Methods ; 384(1-2): 152-6, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22750627

RESUMEN

The effect of trough levels of a monoclonal antibody drug (drugB) on screening cut point (CP) determination for an anti-drug antibody (ADA) assay was scrutinized and the conclusions substantiated by data from a phase 3 cancer clinical study. The ADA assay utilized an acid dissociation step and either 0 or 100 µg/ml drugB was added to the samples prior to obtaining the signals used for CP calculations. Serum samples from three different drug-naive populations were tested (healthy individuals, cancer patients enrolled in the drugB clinical trial and cancer patients whose serum samples were available commercially). For the same disease state samples, both the screening CP and confirmation CP were different when calculated during validation or from study sample analysis. It is reasonable to assume that variability was due to the patient heterogeneity, as they could have been at distinct stages of disease progression, and/or taking different medications, amongst other differences. The patients enrolled in the clinical trial were stratified as per protocol and hence represented a more homogeneous population. Drug effects on CP may be population dependent and also assay dependent.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos/inmunología , Inmunoensayo/normas , Neoplasias/inmunología , Anticuerpos/sangre , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/uso terapéutico , Ensayos Clínicos como Asunto , Relación Dosis-Respuesta a Droga , Humanos , Inmunoensayo/métodos , Cinética , Neoplasias/sangre , Neoplasias/tratamiento farmacológico
18.
Drug Discov Today ; 16(1-2): 58-64, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21093608

RESUMEN

Mass spectrometry (MS) has become a powerful technology in the discovery and development of protein therapeutics in the biopharmaceutical industry. This review article describes recent developments and future trends in the characterization of protein therapeutics using MS. We discuss top-down MS for the characterization of protein modifications, hydrogen/deuterium exchange MS and ion mobility MS methods for higher order protein structure studies. Quantitative analysis of protein therapeutics (in vivo) by MS as an orthogonal approach to immunoassay for pharmacokinetics studies will also be illustrated.


Asunto(s)
Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Proteínas/química , Proteínas/uso terapéutico , Descubrimiento de Drogas/tendencias , Predicción , Humanos , Espectrometría de Masas/tendencias , Proteínas/farmacocinética
19.
J Am Soc Mass Spectrom ; 21(5): 837-44, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20189823

RESUMEN

Introduced in the late 1980s as a reducing reagent, Tris (2-carboxyethyl) phosphine (TCEP) has now become one of the most widely used protein reductants. To date, only a few studies on its side reactions have been published. We report the observation of a side reaction that cleaves protein backbones under mild conditions by fracturing the cysteine residues, thus generating heterogeneous peptides containing different moieties from the fractured cysteine. The peptide products were analyzed by high performance liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptides with a primary amine and a carboxylic acid as termini were observed, and others were found to contain amidated or formamidated carboxy termini, or formylated or glyoxylic amino termini. Formamidation of the carboxy terminus and the formation of glyoxylic amino terminus were unexpected reactions since both involve breaking of carbon-carbon bonds in cysteine.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cisteína/química , Fragmentos de Péptidos/química , Fosfinas/química , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Cisteína/metabolismo , Concentración de Iones de Hidrógeno , Fragmentos de Péptidos/metabolismo , Proteínas/metabolismo
20.
Drug Metab Dispos ; 38(4): 655-66, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20053818

RESUMEN

The disposition of stavudine, a potent and orally active nucleoside reverse transcriptase inhibitor, was investigated in six healthy human subjects. Before dosing humans with [1'-(14)C]stavudine, a tissue distribution study was performed in Long-Evans rats. Results from this study showed no accumulation of radioactivity in any of the tissues studied, indicating that the position of the (14)C-label on the molecule was appropriate for the human study. After a single 80-mg (100 microCi) oral dose of [1'-(14)C]stavudine, approximately 95% of the radioactive dose was excreted in urine with an elimination half-life of 2.35 h. Fecal excretion was limited, accounting for only 3% of the dose. Unchanged stavudine was the major drug-related component in plasma (61% of area under the plasma concentration-time curve from time zero extrapolated to infinite time of the total plasma radioactivity) and urine (67% of dose). The remaining radioactivity was associated with minor metabolites, including mono- and bis-oxidized stavudine, glucuronide conjugates of stavudine and its oxidized metabolite, and an N-acetylcysteine (NAC) conjugate of the ribose (M4) after glycosidic cleavage. Formation of metabolite M4 was shown in human liver microsomes incubated with 2',3'-didehydrodideoxyribose, the sugar base of stavudine, in the presence of NAC. In addition, after similar microsomal incubations fortified with GSH, two GSH conjugates, 3'-GS-deoxyribose and 1'-keto-2',3'-dideoxy-3'-GS-ribose, were observed. This suggests that 2',3'-didehydrodideoxyribose underwent cytochrome P450-mediated oxidation leading to an epoxide intermediate, 2',3'-ribose epoxide, followed by GSH addition. In conclusion, absorption and elimination of stavudine were rapid and complete after oral dosing, with urinary excretion of unchanged drug as the predominant route of elimination in humans.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Estavudina/farmacocinética , Administración Oral , Animales , Fármacos Anti-VIH/administración & dosificación , Área Bajo la Curva , Biotransformación , Cromatografía Líquida de Alta Presión , Heces/química , Humanos , Hidrólisis , Técnicas In Vitro , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Microsomas Hepáticos/metabolismo , Ratas , Ratas Long-Evans , Ribosa/metabolismo , Estavudina/administración & dosificación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...