Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Genes (Basel) ; 14(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36833422

RESUMEN

Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.


Asunto(s)
Glaucoma de Ángulo Cerrado , Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Glaucoma de Ángulo Abierto/genética , Secuenciación del Exoma , Mutación
2.
Cells ; 11(24)2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36552797

RESUMEN

In advanced metastatic cancers with reduced patient survival and poor prognosis, expression of vimentin, a type III intermediate filament protein is frequently observed. Vimentin appears to suppress epithelial characteristics and augments cell migration but the molecular basis for these changes is not well understood. Here, we have ectopically expressed vimentin in MCF-7 and investigated its genomic and functional implications. Vimentin changed the cell shape by decreasing major axis, major axis angle and increased cell migration, without affecting proliferation. Vimentin downregulated major keratin genes KRT8, KRT18 and KRT19. Transcriptome-coupled GO and KEGG analyses revealed that vimentin-affected genes were linked to either cell-cell/cell-ECM or cell cycle/proliferation specific pathways. Using shRNA mediated knockdown of vimentin in two cell types; MCF-7FV (ectopically expressing) and MDA-MB-231 (endogenously expressing), we identified a vimentin-specific signature consisting of 13 protein encoding genes (CDH5, AXL, PTPRM, TGFBI, CDH10, NES, E2F1, FOXM1, CDC45, FSD1, BCL2, KIF26A and WISP2) and two long non-coding RNAs, LINC00052 and C15ORF9-AS1. CDH5, an endothelial cadherin, which mediates cell-cell junctions, was the most downregulated protein encoding gene. Interestingly, downregulation of CDH5 by shRNA significantly increased cell migration confirming our RNA-Seq data. Furthermore, presence of vimentin altered the lamin expression in MCF-7. Collectively, we demonstrate, for the first time, that vimentin in breast cancer cells could change nuclear architecture by affecting lamin expression, which downregulates genes maintaining cell-cell junctions resulting in increased cell migration.


Asunto(s)
Neoplasias de la Mama , Filamentos Intermedios , Humanos , Femenino , Línea Celular Tumoral , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/metabolismo , Neoplasias de la Mama/genética , Movimiento Celular/genética , ARN Interferente Pequeño , Perfilación de la Expresión Génica , Laminas/genética , Proteínas del Tejido Nervioso/genética
3.
Invest Ophthalmol Vis Sci ; 63(9): 14, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35947379

RESUMEN

Purpose: Autosomal dominant cone rod dystrophy 7 (CORD7) was initially linked to the gene RIMS1 and reported in a 4-generation British family in 1998. The purpose of this study was to investigate the legitimacy of this association, and to correctly characterize the genetic cause of this condition. Methods: The allele frequency of RIMS1 c.2459G>A, p.Arg820His, was investigated in the Genomes Aggregation Dataset (gnomAD) datasets and whole genome sequencing (WGS) was performed for 4 members of the CORD7 family with filtering of rare pathogenic variants in a virtual gene panel comprising all genes known to be associated with inherited retinal dystrophy (IRD). Cytogenetic analysis was performed to rule out interchromosomal translocation. Results: RIMS1 p.Arg820His has a maximal carrier frequency of >1:5000 in Europeans. A previously well-characterized PROM1 variant: c.1118C>T, p.Arg373Cys, was detected in 9 affected members of the CORD7 family who underwent WGS or direct sequencing. One affected family member is now known to have macular dystrophy in the absence of RIMS1 p.Arg820His. Clinical analysis of affected family members and 27 individuals with retinopathy associated with the same - PROM1 - variant showed consistent phenotypes. Conclusions: The case for pathogenicity of RIMS1 p.Arg820His is not strong based on its presence on 10 alleles in the gnomAD dataset and absence from additional CORD affected individuals. The finding of a known pathogenic variant in PROM1 correlates well with the phenotypic characteristics of the affected individuals, and is likely to account for the condition. Clear evidence of association between RIMS1 and a retinal dystrophy is yet to be described.


Asunto(s)
Distrofias de Conos y Bastones , Distrofias Retinianas , Antígeno AC133/genética , Alelos , Distrofias de Conos y Bastones/genética , Humanos , Mutación , Mutación Missense , Linaje , Fenotipo , Distrofias Retinianas/genética , Retinitis Pigmentosa
4.
Ophthalmology ; 129(6): 626-636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35031440

RESUMEN

PURPOSE: To identify genetic variants associated with pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) in unrelated patients and to further understand the genetic and potentially causal relationships between PDS and associated risk factors. DESIGN: A 2-stage genome-wide association meta-analysis with replication and subsequent in silico analyses including Mendelian randomization. PARTICIPANTS: A total of 574 cases with PG or PDS and 52 627 controls of European descent. METHODS: Genome-wide association analyses were performed in 4 cohorts and meta-analyzed in 3 stages: (1) a discovery meta-analysis was performed in 3 cohorts, (2) replication was performed in the fourth cohort, and (3) all 4 cohorts were meta-analyzed to increase statistical power. Two-sample Mendelian randomization was used to determine whether refractive error and intraocular pressure exert causal effects over PDS. MAIN OUTCOME MEASURES: The association of genetic variants with PDS and whether myopia exerts causal effects over PDS. RESULTS: Significant association was present at 2 novel loci for PDS/PG. These loci and follow-up analyses implicate the genes gamma secretase activator protein (GSAP) (lead single nucleotide polymorphism [SNP]: rs9641220, P = 6.0×10-10) and glutamate metabotropic receptor 5 (GRM5)/TYR (lead SNP: rs661177, P = 3.9×10-9) as important factors in disease risk. Mendelian randomization showed significant evidence that negative refractive error (myopia) exerts a direct causal effect over PDS (P = 8.86×10-7). CONCLUSIONS: Common SNPs relating to the GSAP and GRM5/TYR genes are associated risk factors for the development of PDS and PG. Although myopia is a known risk factor, this study uses genetic data to demonstrate that myopia is, in part, a cause of PDS and PG.


Asunto(s)
Glaucoma de Ángulo Abierto , Miopía , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Humanos , Presión Intraocular , Miopía/genética , Polimorfismo de Nucleótido Simple
5.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34638469

RESUMEN

Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.

6.
PLoS Genet ; 16(4): e1008721, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32339198

RESUMEN

Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.


Asunto(s)
Glaucoma de Ángulo Abierto/genética , Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Adolescente , Adulto , Anciano , División Celular , Núcleo Celular/metabolismo , Ojo/metabolismo , Femenino , Glaucoma de Ángulo Abierto/patología , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Cinetocoros/metabolismo , Masculino , Persona de Mediana Edad , Linaje , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
7.
Am J Ophthalmol Case Rep ; 14: 83-86, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30976726

RESUMEN

PURPOSE: To describe the clinical and electrophysiological features of an unusual retinopathy in a patient with a novel genotype of CNGB1, mutations in which are implicated in autosomal recessive retinitis pigmentosa (rod-cone dystrophy). OBSERVATIONS: A 61-year old asymptomatic woman was referred to the inherited retinal disorders clinic because of peripheral retinal pigmentary changes. She had normal visual acuity and color vision. Clinical examination and detailed imaging of the macula were normal, but there was atrophy of the outer retina in the periphery with sparse intra-retinal pigmentation. Electroretinography (ERG) revealed undetectable rod responses, with normal cone-mediated responses. The pattern ERG was normal. Genetic analysis identified two previously unreported variants in CNGB1: (c.2258T > A, p.[Leu753*] and c.807G > C, p.[Gln269His]), shown to be in trans. CONCLUSIONS AND IMPORTANCE: This report describes a functionally cone-isolated retina in an adult, apparently hemizygous for a novel missense mutation in CNGB1, a novel phenotype for this gene. The p.[Gln269His] allele is the first missense change, within the glutamic acid-rich protein (GARP) domain of CNGB1, to be associated with retinal disease in humans.

8.
Ophthalmic Genet ; 39(6): 763-770, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30451557

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is a common sight threatening condition. However, there are a number of monogenic macular dystrophies that are clinically similar to AMD, which can potentially provide pathogenetic insights. METHODS: Three siblings from a non-consanguineous Greek-Cypriot family reported central visual disturbance and nyctalopia. The patients had full ophthalmic examinations and color fundus photography, spectral-domain ocular coherence tomography and scanning laser ophthalmoscopy. Targeted polymerase chain reaction (PCR) was performed as a first step to attempt to identify suspected mutations in C1QTNF5 and TIMP3 followed by whole genome sequencing. RESULTS: The three patients were noted to have symptoms of nyctalopia, early paracentral visual field loss and, in older patients, central vision loss. Imaging identified pseudodrusen, retinal atrophy and RPE-Bruch's membrane separation. Whole genome sequencing of the proband revealed two novel heterozygous variants in C1QTNF5, c.556C>T, and c.569C>G. The mutation segregated with disease in this family, occurred in cis, and resulted in missense amino acid changes P186S and S190W in C1QTNF5. In silico modeling of the variants revealed that the S190W mutations was likely to have the greatest pathologic effect and that the combination of the mutations was likely to have an additive effect. CONCLUSIONS: The novel mutations in C1QTNF5 identified here expand the genotypic spectrum of mutations causing late-onset retinal dystrophy.


Asunto(s)
Colágeno/genética , Degeneración Macular/genética , Mutación Missense , Secuenciación Completa del Genoma , Anciano , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Angiografía con Fluoresceína , Genes Dominantes , Humanos , Degeneración Macular/diagnóstico , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Inhibidor Tisular de Metaloproteinasa-3/genética , Tomografía de Coherencia Óptica , Agudeza Visual
9.
Invest Ophthalmol Vis Sci ; 59(12): 4812-4820, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30347075

RESUMEN

Purpose: We describe the clinical features in two pedigrees with dominantly inherited retinopathy segregating the previously reported frameshifting mutation, c.836dupG (p.Ile280Asn*78) in the terminal exon of the RGR gene, and compare their haplotypes to that of the previously reported pedigree. Methods: The probands were ascertained at West Virginia University Eye Institute (WVU) and Moorfields Eye Hospital (MEH) through next generation sequencing (NGS) and whole genome sequencing (WGS) respectively. Clinical data included visual acuity (VA), visual fields, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electroretinography (ERG). Haplotype analysis was performed using Sanger sequencing of the DNA from the molecularly ascertained individuals from the three pedigrees. Results: Nine heterozygous mutation carriers were identified in two families. Four carriers were asymptomatic; five carriers had variable VA reduction, visual field constriction, and experienced difficulty under dim illumination. Fundus examination of the asymptomatic carriers showed diffuse or reticular pigmentation of the retina; the symptomatic carriers had chorioretinal atrophy. FAF imaging showed widespread signal loss in advanced retinopathy, and reticular hyperautofluorescence in mild cases. OCT showed loss of outer retinal lamina in advanced disease. ERG showed moderate-to-severe rod-cone dysfunction in two symptomatic carriers; and was normal in three asymptomatic carriers. A shared haplotype flanking the mutation of up to 6.67 Mb was identified in both families. Within this region, 1.27 Mb were shared with the first family reported with this retinopathy. Conclusions: The clinical data suggest a variable and slow degeneration of the RPE. A shared chromosomal segment surrounding the RGR gene suggests a single ancestral mutational event underlying all three families.


Asunto(s)
Mutación del Sistema de Lectura , Receptores Acoplados a Proteínas G/genética , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/patología , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Angiografía con Fluoresceína , Genes Dominantes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Linaje , Tomografía de Coherencia Óptica , Trastornos de la Visión/diagnóstico , Trastornos de la Visión/genética , Agudeza Visual/fisiología , Campos Visuales/fisiología , Secuenciación Completa del Genoma , Adulto Joven
10.
Ophthalmic Genet ; 39(4): 539-543, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29947570

RESUMEN

OBJECTIVE: This study was undertaken with the objective to investigate the potential involvement of VAX2 in retinal degeneration. METHODS: A cohort of macular and cone dystrophy patients (n = 70) was screened for variant identification. Polymerase chain reaction (PCR) products were purified using ExoSAP-IT. Direct sequencing of PCR products was performed using BigDye 3.1 on the ABI 3730 DNA Analyzer and analyzed using DNASTAR software tool. Search for known variant was performed using the following platforms: 1000 Genomes Project, Ensembl, UCSC, ExAc, and dbSNP. The VAX2 mutants were generated using the GeneArt® Site-Directed Mutagenesis kit. In vitro analysis was performed in hTERTRPE-1 (RPE-1) cell line. Cells were photographed using a Zeiss AXIOVERT S100 microscope. Images were analyzed using Photoshop CS4 software. RESULTS: Here, we report the identification of a heterozygous non-synonymous variant (c.416T>G; p.Leu139Arg) in one cone dystrophy proband. Functional characterization of this variant in vitro revealed an aberrant phenotype seen as protein mislocalization to cytoplasm/nucleus and aggregates undergoing degradation or forming aggresomes. The cellular phenotype suggests protein loss-of-function. Analysis of the VAX2 p.Leu139Met, a variant present in the normal population, showed a phenotype similar to the wild-type, further supporting the hypothesis for the Leucine 139 to Arginine change to be damaging. CONCLUSIONS: This study raises the interesting possibility for evaluating VAX2 as a candidate gene for cone dystrophy.


Asunto(s)
Distrofia del Cono/genética , Proteínas de Homeodominio/genética , Mutación , Distrofia del Cono/diagnóstico , Distrofia del Cono/fisiopatología , Análisis Mutacional de ADN , Electrorretinografía , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Linaje , Fenotipo , Plásmidos , Reacción en Cadena de la Polimerasa , Agudeza Visual
11.
Eur J Hum Genet ; 26(5): 687-694, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29391521

RESUMEN

To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype-phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull's-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes-intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date.


Asunto(s)
Proteínas del Ojo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Degeneración Macular/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Registros Electrónicos de Salud , Femenino , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Degeneración Macular/fisiopatología , Masculino , Segmento Externo de las Células Fotorreceptoras Retinianas/patología , Adulto Joven
12.
JAMA Ophthalmol ; 134(7): 753-62, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27259167

RESUMEN

IMPORTANCE: Knobloch syndrome is a rare, recessively inherited disorder classically characterized by high myopia, retinal detachment, and occipital encephalocele, but it is now known to have an increasingly variable phenotype. There is a lack of reported electrophysiologic data, and some key clinical features have yet to be described. OBJECTIVE: To expand on current clinical, electrophysiologic, and molecular genetic findings in Knobloch syndrome. DESIGN, SETTING, AND PARTICIPANTS: Twelve patients from 7 families underwent full ophthalmic examination and retinal imaging. Further investigations included electroretinography and neuroradiologic imaging. Bidirectional Sanger sequencing of COL18A1 was performed with segregation on available relatives. The study was conducted from July 4, 2013, to October 5, 2015. Data analysis was performed from May 20, 2014, to November 3, 2015. MAIN OUTCOMES AND MEASURES: Results of ophthalmic and neuroradiologic assessment and sequence analysis of COL18A1. RESULTS: Of the 12 patients (6 males; mean age at last review, 16 years [range, 2-38 years]), all had high myopia in at least 1 eye and severely reduced vision. A sibling pair had unilateral high myopia in their right eyes and near emmetropia in their left eyes from infancy. Anterior segment abnormalities included absent iris crypts, iris transillumination, lens subluxation, and cataract. Two patients with iris transillumination had glaucoma. Fundus characteristics included abnormal collapsed vitreous, macular atrophy, and a tesselated fundus. Five patients had previous retinal detachment. Electroretinography revealed a cone-rod pattern of dysfunction in 8 patients, was severely reduced or undetectable in 2 patients, and demonstrated cone-rod dysfunction in 1 eye with undetectable responses in the other eye in 2 patients. Radiologic imaging demonstrated occipital encephalocele or meningocele in 3 patients, occipital skull defects in 4 patients, minor occipital changes in 2 patients, and no abnormalities in 2 patients. Cutaneous scalp changes were present in 5 patients. Systemic associations were identified in 8 patients, including learning difficulties, epilepsy, and congenital renal abnormalities. Biallelic mutations including 2 likely novel mutations in COL18A1, were identified in 6 families that were consistent with autosomal recessive inheritance with a single mutation identified in a family with 2 affected children. CONCLUSIONS AND RELEVANCE: This report describes new features in patients with Knobloch syndrome, including pigment dispersion syndrome and glaucoma as well as cone-rod dysfunction on electroretinography. Two patients had normal neuroradiologic findings, emphasizing that some affected individuals have isolated ocular disease. Awareness of the ocular phenotype may aid early diagnosis, appropriate genetic counseling, and monitoring for potential complications.


Asunto(s)
Colágeno Tipo VIII/genética , Encefalocele/diagnóstico , Encefalocele/genética , Mutación , Miopía Degenerativa/diagnóstico , Células Fotorreceptoras de Vertebrados/fisiología , Desprendimiento de Retina/congénito , Trastornos de la Visión/diagnóstico , Adolescente , Adulto , Niño , Preescolar , Colágeno Tipo XVIII , Análisis Mutacional de ADN , Electrorretinografía , Encefalocele/fisiopatología , Síndrome de Exfoliación/diagnóstico , Exones/genética , Femenino , Glaucoma de Ángulo Abierto/diagnóstico , Humanos , Imagen por Resonancia Magnética , Masculino , Biología Molecular , Linaje , Reacción en Cadena de la Polimerasa , Degeneración Retiniana , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/genética , Desprendimiento de Retina/fisiopatología , Adulto Joven
13.
BMC Med Genomics ; 9: 15, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001270

RESUMEN

BACKGROUND: Glaucoma is the largest cause of irreversible blindness affecting more than 60 million people globally. The disease is defined as a gradual loss of peripheral vision due to death of Retinal Ganglion Cells (RGC). The RGC death is largely influenced by the rate of aqueous humor production by ciliary processes and its passage through the trabecular meshwork (TM) in the anterior part of the eye. Primary open angle glaucoma (POAG), the most common subtype, is a genetically complex disease. Multiple genes and many loci have been reported to be involved in POAG but taken together they explain less than 10 % of the patients from a genetic perspective warranting more studies in different world populations. The purpose of this study was to perform genome-wide search for common variants associated with POAG in an east-Indian population. METHODS: The study recruited 746 POAG cases and 697 controls distributed into discovery and validation cohorts. In the discovery phase, genome-wide genotype data was generated on Illumina Infinium 660 W-Quad platform and the significant SNPs were genotyped using Illumina GGGT assay in the second phase. Logistic regression was used to test association in the discovery phase to adjust for population sub-structure and chi-square test was used for association analysis in validation phase. Publicly available expression dataset for trabecular meshwork was used to check for expression of the candidate gene under cyclic mechanical stress. Western blot and immunofluorescence experiments were performed in human TM cells and murine eye, respectively to check for expression of the candidate gene. RESULTS: Meta-analysis of discovery and validation phase data revealed the association of rs7916852 in MPP7 gene (p = 5.7x10(-7)) with POAG. We have shown abundant expression of MPP7 in the HTM cells. Expression analysis shows that upon cyclic mechanical stress MPP7 was significantly down-regulated in HTM (Fold change: 2.6; p = 0.018). MPP7 protein expression was also found to be enriched in the ciliary processes of the murine eye. CONCLUSION: Using a genome-wide approach we have identified MPP7 as a novel candidate gene for POAG with evidence of its expression in relevant ocular tissues and dysregulation under mechanical stress possibly mimicking the disease scenario.


Asunto(s)
Regulación hacia Abajo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto/genética , Proteínas de la Membrana/genética , Estrés Mecánico , Malla Trabecular/metabolismo , Animales , Cuerpo Ciliar/metabolismo , Estudios de Cohortes , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , India , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Malla Trabecular/patología
14.
Am J Hum Genet ; 96(6): 948-54, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25983245

RESUMEN

Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs(∗)3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165(∗)] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function.


Asunto(s)
Degeneración Macular/genética , Degeneración Macular/patología , Proteínas de la Membrana/genética , Mutación/genética , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Adulto , Secuencia de Bases , Exoma/genética , Homocigoto , Humanos , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Pakistán/etnología , Linaje , Análisis de Secuencia de ADN , Reino Unido
15.
Invest Ophthalmol Vis Sci ; 56(13): 8297-305, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26720483

RESUMEN

PURPOSE: The French Canadian population of Quebec is a unique, well-known founder population with religious, linguistic, and geographic isolation. The genetics of retinitis pigmentosa (RP) in Quebec is not well studied thus far. The purpose of our study was to establish the genetic architecture of autosomal dominant RP (adRP) and to characterize the phenotypes associated with new adRP mutations in Quebec. METHODS: Sanger sequencing of the commonly mutated currently known adRP genes was performed in a clinically well-characterized cohort of 60 adRP French Canadian families. Phenotypes were analyzed by projected visual acuity (best corrected), Goldmann visual fields, optical coherence tomography (OCT), fundus autofluorescence (FAF), and ERG. The potential effect of the novel mutations was assessed using in silico bioinformatic tools. The pathogenicity of all variants was then confirmed by segregation analysis within the families, when available. RESULTS: We identified the causal mutation/gene in 24 of our adRP families, as 24 (40%) of 60 patients had adRP mutations in six known adRP genes. Eleven (46%) of these mutations were in RHO, four mutations (17%) were found in SNRNP200, three mutations (12.5%) in PRPH2/RDS, three mutations (12.5%) in TOPORS, two mutations (8%) in PRPF31, and one mutation (4%) in IMPDH1. Four mutations were novel. We identified new mutations in RHO (p.S270I), PRPF31 (p.R288W), IMPDH1 (p.Q318H), and TOPORS (p.H889R); the rest were previously reported. We present the genotype-phenotype characteristics of the four novel missense mutations. CONCLUSIONS: This is the first large screening of adRP genes in the founder population of Quebec. Our prevalence of known adRP genes is 40% in the French Canadian population, which is lower than in other adRP populations around the world, illustrating the uniqueness of the French Canadian population. Our findings are crucial in expanding the current understanding of the genotypic-phenotypic spectrum of RP and documenting the genetic architecture of our founder population.


Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Mutación , Retinitis Pigmentosa/genética , Adulto , Anciano , Análisis Mutacional de ADN , Proteínas del Ojo/metabolismo , Femenino , Genes Dominantes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Prevalencia , Quebec/epidemiología , Retinitis Pigmentosa/epidemiología , Retinitis Pigmentosa/metabolismo
16.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899048

RESUMEN

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Asunto(s)
Estudios de Asociación Genética , Variación Genética , Degeneración Macular/genética , Proteínas de Microfilamentos/genética , Adulto , Anciano , Secuencia de Aminoácidos , Lámina Basal de la Coroides/metabolismo , Análisis Mutacional de ADN , Exoma , Matriz Extracelular/metabolismo , Fibrilina-2 , Fibrilinas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Degeneración Macular/diagnóstico , Masculino , Metaanálisis como Asunto , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Linaje , Conformación Proteica , Estabilidad Proteica , Retina/metabolismo , Retina/patología , Alineación de Secuencia
17.
PLoS Genet ; 10(3): e1004089, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603532

RESUMEN

Anterior chamber depth (ACD) is a key anatomical risk factor for primary angle closure glaucoma (PACG). We conducted a genome-wide association study (GWAS) on ACD to discover novel genes for PACG on a total of 5,308 population-based individuals of Asian descent. Genome-wide significant association was observed at a sequence variant within ABCC5 (rs1401999; per-allele effect size =  -0.045 mm, P = 8.17 × 10(-9)). This locus was associated with an increase in risk of PACG in a separate case-control study of 4,276 PACG cases and 18,801 controls (per-allele OR = 1.13 [95% CI: 1.06-1.22], P = 0.00046). The association was strengthened when a sub-group of controls with open angles were included in the analysis (per-allele OR = 1.30, P = 7.45 × 10(-9); 3,458 cases vs. 3,831 controls). Our findings suggest that the increase in PACG risk could in part be mediated by genetic sequence variants influencing anterior chamber dimensions.


Asunto(s)
Cámara Anterior/patología , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Cerrado/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Cámara Anterior/metabolismo , Pueblo Asiatico , Glaucoma de Ángulo Cerrado/patología , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
18.
Hum Mutat ; 35(3): 289-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375934

RESUMEN

Inherited retinal dystrophies are a major cause of childhood blindness. Here, we describe the identification of a homozygous frameshift mutation (c.1194_1195delAG, p.Arg398Serfs*9) in TUB in a child from a consanguineous UK Caucasian family investigated using autozygosity mapping and whole-exome sequencing. The proband presented with obesity, night blindness, decreased visual acuity, and electrophysiological features of a rod cone dystrophy. The mutation was also found in two of the proband's siblings with retinal dystrophy and resulted in mislocalization of the truncated protein. In contrast to known forms of retinal dystrophy, including those caused by mutations in the tubby-like protein TULP-1, loss of function of TUB in the proband and two affected family members was associated with early-onset obesity, consistent with an additional role for TUB in energy homeostasis.


Asunto(s)
Mutación del Sistema de Lectura , Homocigoto , Obesidad/genética , Proteínas/genética , Retinitis Pigmentosa/genética , Proteínas Adaptadoras Transductoras de Señales , Niño , Mapeo Cromosómico , Consanguinidad , Proteínas del Ojo/genética , Femenino , Genes Recesivos , Homeostasis , Humanos , Masculino , Linaje , Reino Unido , Población Blanca/genética
19.
Am J Hum Genet ; 93(2): 321-9, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23849777

RESUMEN

Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101-1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated centriole of photoreceptors and the periciliary extension of the inner segment. Depletion of ARL2BP caused cilia shortening. Moreover, depletion of ARL2, but not ARL3, caused displacement of ARL2BP from the basal body, suggesting that ARL2 is vital for recruiting or anchoring ARL2BP at the base of the cilium. This hypothesis is supported by the finding that the p.Met45Arg amino acid substitution reduced binding to ARL2 and caused the loss of ARL2BP localization at the basal body in ciliated nasal epithelial cells. These data demonstrate a role for ARL2BP and ARL2 in primary cilia function and that this role is essential for normal photoreceptor maintenance and function.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Proteínas Portadoras/genética , Proteínas de Unión al GTP/genética , Mutación , Células Fotorreceptoras/metabolismo , Retinitis Pigmentosa/genética , Factores de Ribosilacion-ADP/metabolismo , Adulto , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Proteínas de Unión al GTP/metabolismo , Genes Recesivos , Homocigoto , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones , Datos de Secuencia Molecular , Linaje , Células Fotorreceptoras/patología , Unión Proteica , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción
20.
Eur J Hum Genet ; 21(12): 1356-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23531866

RESUMEN

Congenital cataracts are an important cause of bilateral visual impairment in infants. Through genome-wide linkage analysis in a four-generation family of Irish descent, the disease-associated gene causing autosomal-dominant congenital nuclear cataract was mapped to chromosome 4p16.1. The maximum logarithm of odds (LOD) score was 2.62 at a recombination fraction θ=0, obtained for marker D4S432 physically close to the Wolfram gene (WFS1). By sequencing the coding regions and intron-exon boundaries of WFS1, we identified a DNA substitution (c.1385A-to-G) in exon 8, causing a missense mutation at codon 462 (E462G) of the Wolframin protein. This is the first report of a mutation in this gene causing an isolated nuclear congenital cataract. These findings suggest that the membrane trafficking protein Wolframin may be important for supporting the developing lens.


Asunto(s)
Catarata/congénito , Genes Dominantes/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de la Membrana/genética , Mutación Missense/genética , Secuencia de Bases , Catarata/genética , Exones/genética , Femenino , Ligamiento Genético/genética , Genotipo , Humanos , Intrones/genética , Masculino , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA