Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202319344, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519422

RESUMEN

Amino acids (AAs) are modular building blocks which nature uses to synthesize both macromolecules, such as proteins, and small molecule natural products, such as alkaloids and non-ribosomal peptides. While the 20 main proteinogenic AAs display relatively limited side chain diversity, a wide range of non-canonical amino acids (ncAAs) exist that are not used by the ribosome for protein synthesis, but contain a broad array of structural features and functional groups. In this communication, we report the discovery of the biosynthetic pathway for a new ncAA, pazamine, which contains a cyclopropane ring formed in two steps. In the first step, a chlorine is added onto the C4 position of lysine by a radical halogenase, PazA. The cyclopropane ring is then formed in the next step by a pyridoxal-5'-phosphate-dependent enzyme, PazB, via an SN2-like attack at C4 to eliminate chloride. Genetic studies of this pathway in the native host, Pseudomonas azotoformans,  show that pazamine potentially inhibits ethylene biosynthesis in growing plants based on alterations in the root phenotype of Arabidopsis thaliana seedlings. We further show that PazB can be utilized to make an alternative cyclobutane-containing AA. These discoveries may lead to advances in biocatalytic production of specialty chemicals and agricultural biotechnology.

2.
ACS Synth Biol ; 12(5): 1533-1545, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37083366

RESUMEN

The need for convenient tools to express transgenes over a large dynamic range is pervasive throughout plant synthetic biology; however, current efforts are largely limited by the heavy reliance on a small set of strong promoters, precluding more nuanced and refined engineering endeavors in planta. To address this technical gap, we characterize a suite of constitutive promoters that span a wide range of transcriptional levels and develop a GoldenGate-based plasmid toolkit named PCONS, optimized for versatile cloning and rapid testing of transgene expression at varying strengths. We demonstrate how easy access to a stepwise gradient of expression levels can be used for optimizing synthetic transcriptional systems and the production of small molecules in planta. We also systematically investigate the potential of using PCONS as an internal standard in plant biology experimental design, establishing the best practices for signal normalization in experiments. Although our library has primarily been developed for optimizing expression in N. benthamiana, we demonstrate the translatability of our promoters across distantly related species using a multiplexed reporter assay with barcoded transcripts. Our findings showcase the advantages of the PCONS library as an invaluable toolkit for plant synthetic biology.


Asunto(s)
Plantas , Plantas/genética , Regiones Promotoras Genéticas/genética , Transgenes/genética , Plásmidos/genética , Expresión Génica
3.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168212

RESUMEN

Amino acids (AAs) are modular and modifiable building blocks which nature uses to synthesize both macromolecules, such as proteins, and small molecule natural products, such as alkaloids and non-ribosomal peptides (NRPs). While the 20 main proteinogenic AAs display relatively limited side-chain diversity, a wide range of non-canonical amino acids (ncAAs) exist that are not used by the ribosome for protein synthesis but contain a broad array of structural features and functional groups not found in proteinogenic AAs. In this communication, we report the discovery of the biosynthetic pathway for a new ncAA, pazamine, which contains a cyclopropane ring formed in two steps. In the first step, a chlorine is added onto the C4 position of lysine by a radical halogenase PazA. The cyclopropane ring is then formed in the next step by a pyridoxal-5'-phosphate-dependent enzyme, PazB, via an SN2-like attack onto C4 to eliminate chloride. Genetic studies of this pathway in the native host, Pseudomonas azotoformans, show that pazamine and its succinylated derivative, pazamide, potentially inhibit ethylene biosynthesis in growing plants based on alterations in the root phenotype of Arabidopsis thaliana seedlings. We further show that PazB can be utilized to make an alternative cyclobutane-containing AA. These discoveries may lead to advances in biocatalytic production of specialty chemicals and agricultural biotechnology.

4.
Hist Philos Life Sci ; 44(1): 3, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103850

RESUMEN

Tobacco mosaic virus (TMV) has served as a model organism for pathbreaking work in plant pathology, virology, biochemistry and applied genetics for more than a century. We were intrigued by a photograph published in Phytopathology in 1934 showing that Tabasco pepper plants responded to TMV infection with localized necrotic lesions, followed by abscission of the inoculated leaves. This dramatic outcome of a biological response to infection observed by Francis O. Holmes, a virologist at the Rockefeller Institute for Medical Research, was used to score plants for resistance to TMV infection. Our objective was to gain a better understanding of early to mid-twentieth century ideas of genetic resistance to viruses in crop plants. We investigated Holmes' observation as a practical exercise in reworking an experiment, having been inspired by Pamela Smith's innovative Making and Knowing Project. We had a great deal of difficulty replicating Holmes' experiment, finding that biological materials and experimental customs change over time, in ways that ideas do not. Using complementary tools plus careful study and interpretation of the original text and figures, we were able to rework, yet only partially replicate, this experiment. Reading peer-reviewed manuscripts that cited Holmes' 1934 report provided an additional level of insight into the interpretation and replication of this work in the decades that followed. From this, we touch on how experimental reworking can inform our strategies to address the reproducibility "crisis" in twenty-first century science.


Asunto(s)
Virus del Mosaico del Tabaco , Plantas , Reproducibilidad de los Resultados , Nicotiana
5.
Nat Commun ; 11(1): 2931, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523014

RESUMEN

Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.


Asunto(s)
Hierro/metabolismo , Lisina/metabolismo , Oxigenasas/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Pseudomonas putida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA