Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1338070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385025

RESUMEN

Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-ß) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-ß/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-ß/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.

2.
Dev Dyn ; 251(11): 1798-1815, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35710880

RESUMEN

BACKGROUND: The vitamin A derivative all-trans retinoic acid (RA) regulates early stages of inner ear development. As the early disruption of the RA pathway results in profound mispatterning of the developing inner ear, this confounds analyses of specific roles in later stages. Therefore, we used the temporal-specific exposure of all-trans RA or diethylaminobenzaldehyde to evaluate RA functions in late otic development. RESULTS: Perturbing late RA signaling causes behavioral defects analogous to those expected in larvae suffering from vestibular dysfunction. These larvae also demonstrate malformations of the semi-circular canals, as visualized through (a) use of the transgenic strain nkhspdmc12a, a fluorescent reporter expressed in otic epithelium; and (b) injection of the fluorescent lipophilic dye DiI. We also noted the altered expression of genes encoding ECM proteins or modifying enzymes. Other malformations of the inner ear observed in our work include the loss or reduced size of the utricular and saccular otoliths, suggesting a role for RA in otolith maintenance. CONCLUSION: Our work has identified a previously undescribed late phase of RA activity in otic development, demonstrating that vestibular defects observed in human patients in relation to perturbed RA signaling are not solely due to its early disruption in otic development.


Asunto(s)
Tretinoina , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Membrana Otolítica , Desarrollo Embrionario , Canales Semicirculares , Morfogénesis
3.
Hum Genet ; 141(8): 1385-1407, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35089417

RESUMEN

Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, these data suggest that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.


Asunto(s)
Coloboma , Animales , Coloboma/genética , Ojo , Cresta Neural , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
J Anat ; 239(4): 801-828, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34047378

RESUMEN

The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.


Asunto(s)
Vestíbulo del Laberinto , Animales , Humanos , Vertebrados
5.
Genes (Basel) ; 12(2)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530637

RESUMEN

Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left-right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld-Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left-right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a-/-; foxc1b-/- homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left-right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left-right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld-Rieger syndrome patients.


Asunto(s)
Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/etiología , Enfermedades Hereditarias del Ojo/diagnóstico , Enfermedades Hereditarias del Ojo/etiología , Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Alelos , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Mutación , Pez Cebra
6.
J Biol Chem ; 296: 100073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33187986

RESUMEN

Tubby-like proteins (TULPs) are characterized by a conserved C-terminal domain that binds phosphoinositides. Collectively, mammalian TULP1-4 proteins play essential roles in intracellular transport, cell differentiation, signaling, and motility. Yet, little is known about how the function of these proteins is regulated in cells. Here, we present the protein-protein interaction network of TULP3, a protein that is responsible for the trafficking of G-protein-coupled receptors to cilia and whose aberrant expression is associated with severe developmental disorders and polycystic kidney disease. We identify several protein interaction nodes linked to TULP3 that include enzymes involved in acetylation and ubiquitination. We show that acetylation of two key lysine residues on TULP3 by p300 increases TULP3 protein abundance and that deacetylation of these sites by HDAC1 decreases protein levels. Furthermore, we show that one of these sites is ubiquitinated in the absence of acetylation and that acetylation inversely correlates with ubiquitination of TULP3. This mechanism is evidently conserved across species and is active in zebrafish during development. Finally, we identify this same regulatory module in TULP1, TULP2, and TULP4 and demonstrate that the stability of these proteins is similarly modulated by an acetylation switch. This study unveils a signaling pathway that links nuclear enzymes to ciliary membrane receptors via TULP3, describes a dynamic mechanism for the regulation of all tubby-like proteins, and explores how to exploit it pharmacologically using drugs.


Asunto(s)
Proteínas del Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Proteínas del Ojo/genética , Células HEK293 , Células HeLa , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Estabilidad Proteica , Factores de Transcripción p300-CBP/genética
7.
Am J Med Genet C Semin Med Genet ; 184(3): 590-610, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32852110

RESUMEN

Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.


Asunto(s)
Coloboma/genética , Ojo/crecimiento & desarrollo , Microftalmía/genética , Animales , Niño , Coloboma/patología , Ojo/metabolismo , Humanos , Microftalmía/patología , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Organogénesis/genética
8.
Invest Ophthalmol Vis Sci ; 61(4): 9, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32293666

RESUMEN

Purpose: Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods: Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results: Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions: GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.


Asunto(s)
Factor 6 de Diferenciación de Crecimiento/genética , Morfogénesis/genética , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/anomalías , Animales , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Larva , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación/genética , Adhesión en Parafina , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Pez Cebra/genética
9.
Gene Expr Patterns ; 35: 119100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088341

RESUMEN

Cryptochromes (Cry) are ancient flavoproteins known to regulate circadian rhythms. In plants and some animals, Cry is sensitive to blue light due to its ability to bind the chromophore flavin adenine dinucleotide (FAD). Cry is also suggested to function in magnetoreception, since it can create light-dependent radical pairs with FAD that are sensitive to magnetic fields (Ritz2000; Liedvogel et al., 2007; Solov'yov et al., 2014). Cry is expressed in the visual system of various animals and specifically co-localizes with both short- and long-wavelength cone photoreceptors in birds (Bischof et al., 2011; Günther et al., 2018). However, magnetoreception is not limited to birds and the expression of cry genes in the photoreceptors of other vertebrates is unknown. Here, we use zebrafish to examine the retinal expression pattern of cry family genes. Zebrafish have seven cry genes and while most are known regulators of the circadian clock, relatively little is known about cry2 and cry4 (Haug et al., 2015; Liu et al., 2015). Therefore, we explored cry2 and cry4 expression in the larval and adult zebrafish retina. We demonstrate that cry4 is predominantly expressed in the short-wavelength ultraviolet (UV)-sensitive cone photoreceptors, while cry2 is expressed in UV cones and additional retinal photoreceptors during the day. Using Nitroreductase (NTZ)-mediated cell ablation and qRT-PCR, we find that cry4 expression significantly decreases when UV cones are ablated, but not when the neighboring short-wavelength sensitive blue cones are ablated. cry2 expression decreases after UV cone ablation but is still significantly detectable, while blue cone ablation does not alter cry2 expression. This study provides a more detailed annotation of cry2 and cry4 expression in the zebrafish retina and highlights the feasibility of a well-established ablation paradigm to test if photoreceptors are required for magnetoreception in fish. Although evidence of magnetoreception in adult zebrafish has gained considerable evidence over the last decade (Shcherbakov et al., 2005; Takebe et al., 2012; Krylov et al., 2016; Myklatun et al., 2018) the mediating mechanism(s) remain unknown. Additionally, despite limited evidence that larval zebrafish are magnetoreceptive, many other larval fish have a characterized magnetic sense; sockeye salmon fry, larval coral reef fish, larval medaka and larval Atlantic haddock have been shown to be responsive to magnetic fields (Quinn; 1980; Bottesch et al., 2016; O'Connor and Muheim. 2017; Myklatun et al., 2018; Cresci, et al. 2019). If cry-cone interactions are conserved within fish, our findings may suggest one potential mechanism, such that UV cones appear poised for light-dependent magnetoreception via photoreceptor subtype-specific expression of cry.


Asunto(s)
Criptocromos/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Proteínas de Pez Cebra/genética , Animales , Criptocromos/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Rayos Ultravioleta , Pez Cebra , Proteínas de Pez Cebra/metabolismo
10.
Dev Biol ; 453(1): 34-47, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199900

RESUMEN

Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrß positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.


Asunto(s)
Diferenciación Celular , Embrión no Mamífero/citología , Factores de Transcripción Forkhead/metabolismo , Cabeza/irrigación sanguínea , Cabeza/embriología , Músculo Liso Vascular/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular/genética , Embrión no Mamífero/metabolismo , Endotelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Transcriptoma/genética , Regulación hacia Arriba , Pez Cebra/genética
11.
J Vis Exp ; (145)2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30985739

RESUMEN

Congenital ocular coloboma is a genetic disorder that is typically observed as a cleft in the inferior aspect of the eye resulting from incomplete choroid fissure closure. Recently, the identification of individuals with coloboma in the superior aspect of the iris, retina, and lens led to the discovery of a novel structure, referred to as the superior fissure or superior ocular sulcus (SOS), that is transiently present on the dorsal aspect of the optic cup during vertebrate eye development. Although this structure is conserved across mice, chick, fish, and newt, our current understanding of the SOS is limited. In order to elucidate factors that contribute to its formation and closure, it is imperative to be able to observe it and identify abnormalities, such as delay in the closure of the SOS. Here, we set out to create a standardized series of protocols that can be used to efficiently visualize the SOS by combining widely available microscopy techniques with common molecular biology techniques such as immunofluorescent staining and mRNA overexpression. While this set of protocols focuses on the ability to observe SOS closure delay, it is adaptable to the experimenter's needs and can be easily modified. Overall, we hope to create an approachable method through which our understanding of the SOS can be advanced to expand the current knowledge of vertebrate eye development.


Asunto(s)
Desarrollo Embrionario , Ojo/embriología , Iris/embriología , Cristalino/embriología , Organogénesis , Retina/embriología , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Iris/fisiología , Cristalino/fisiología , Ratones , Retina/fisiología
12.
Mech Dev ; 150: 28-41, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29496480

RESUMEN

The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Tretinoina/metabolismo , Proteínas de Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Embrión no Mamífero , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Neuronas/metabolismo , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Transducción de Señal/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
13.
PLoS Genet ; 14(3): e1007246, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522511

RESUMEN

The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Coloboma/embriología , Coloboma/genética , Citocromo P-450 CYP1B1/genética , Ojo/embriología , Adulto , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Embrión de Pollo , Embrión no Mamífero , Factor 6 de Diferenciación de Crecimiento/genética , Factor 6 de Diferenciación de Crecimiento/metabolismo , Humanos , Lactante , Ratones , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
PLoS One ; 12(1): e0171058, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28122043

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0166040.].

15.
PLoS One ; 11(11): e0166040, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27861498

RESUMEN

Hematopoietic stem cells (HSCs) are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA) functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.

16.
Zebrafish ; 13 Suppl 1: S153-63, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27248438

RESUMEN

The zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community. In this commentary, we review the disease profile of SVCV in fish, discuss the findings of the Canadian government's scientific assessment, how the interpretations of their assessment differ from that of the Canadian research community, and describe the negative impact of these regulations on the Canadian research community and public as it pertains to protecting the health of Canadians.


Asunto(s)
Comercio/legislación & jurisprudencia , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/transmisión , Regulación Gubernamental , Infecciones por Rhabdoviridae/veterinaria , Pez Cebra , Animales , Canadá , Enfermedades de los Peces/virología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología
17.
Hum Mol Genet ; 25(7): 1382-91, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908622

RESUMEN

Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma.


Asunto(s)
Mutación del Sistema de Lectura , Receptores Frizzled/genética , Vía de Señalización Wnt , Animales , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Ratones , Microftalmía/genética , Microftalmía/metabolismo , Linaje , Pez Cebra/genética , Pez Cebra/metabolismo
18.
J Clin Invest ; 124(11): 4877-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25250569

RESUMEN

Patients with cerebral small-vessel disease (CSVD) exhibit perturbed end-artery function and have an increased risk for stroke and age-related cognitive decline. Here, we used targeted genome-wide association (GWA) analysis and defined a CSVD locus adjacent to the forkhead transcription factor FOXC1. Moreover, we determined that the linked SNPs influence FOXC1 transcript levels and demonstrated that patients as young as 1 year of age with altered FOXC1 function exhibit CSVD. MRI analysis of patients with missense and nonsense mutations as well as FOXC1-encompassing segmental duplication and deletion revealed white matter hyperintensities, dilated perivascular spaces, and lacunar infarction. In a zebrafish model, overexpression or morpholino-induced suppression of foxc1 induced cerebral hemorrhage. Inhibition of foxc1 perturbed platelet-derived growth factor (Pdgf) signaling, impairing neural crest migration and the recruitment of mural cells, which are essential for vascular stability. GWA analysis also linked the FOXC1-interacting transcription factor PITX2 to CSVD, and both patients with PITX2 mutations and murine Pitx2-/- mutants displayed brain vascular phenotypes. Together, these results extend the genetic etiology of stroke and demonstrate an increasing developmental basis for human cerebrovascular disease.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/genética , Factores de Transcripción Forkhead/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Hemorragia Cerebral/genética , Codón sin Sentido , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Leucoencefalopatías/genética , Desequilibrio de Ligamiento , Mutación Missense , Factor de Crecimiento Derivado de Plaquetas/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transducción de Señal , Pez Cebra , Proteína del Homeodomínio PITX2
19.
Dev Biol ; 388(2): 192-204, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24457098

RESUMEN

Axial patterning of the developing eye is critically important for proper axonal pathfinding as well as for key morphogenetic events, such as closure of the optic fissure. The dorsal retina is initially specified by the actions of Bone Morphogenetic Protein (BMP) signaling, with such identity subsequently maintained by the Wnt-ß catenin pathway. Using zebrafish as a model system, we demonstrate that Secreted frizzled-related protein 1a (Sfrp1a) and Sfrp5 work cooperatively to pattern the retina along the dorso-ventral axis. Sfrp1a/5 depleted embryos display a reduction in dorsal marker gene expression that is consistent with defects in BMP- and Wnt-dependent dorsal retina identity. In accord with this finding, we observe a marked reduction in transgenic reporters of BMP and Wnt signaling within the dorsal retina of Sfrp1a/5 depleted embryos. In contrast to studies in which canonical Wnt signaling is blocked, we note an increase in BMP ligand expression in Sfrp1a/5 depleted embryos, a phenotype similar to that seen in embryos with inhibited BMP signaling. Overexpression of a low dose of sfrp5 mRNA causes an increase in dorsal retina marker gene expression. We propose a model in which Sfrp proteins function as facilitators of both BMP and Wnt signaling within the dorsal retina.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Retina/embriología , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Hibridación in Situ , Morfogénesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra
20.
BMC Dev Biol ; 13: 31, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23937294

RESUMEN

BACKGROUND: The reiterated architecture of cranial motor neurons aligns with the segmented structure of the embryonic vertebrate hindbrain. Anterior-posterior identity of cranial motor neurons depends, in part, on retinoic acid signaling levels. The early vertebrate embryo maintains a balance between retinoic acid synthetic and degradative zones on the basis of reciprocal expression domains of the retinoic acid synthesis gene aldhehyde dehydrogenase 1a2 (aldh1a2) posteriorly and the oxidative gene cytochrome p450 type 26a1 (cyp26a1) in the forebrain, midbrain, and anterior hindbrain. RESULTS: This manuscript investigates the role of zinc finger of the cerebellum (zic) transcription factors in regulating levels of retinoic acid and differentiation of cranial motor neurons. Depletion of zebrafish Zic2a and Zic2b results in a strong downregulation of aldh1a2 expression and a concomitant reduction in activity of a retinoid-dependent transgene. The vagal motor neuron phenotype caused by loss of Zic2a/2b mimics a depletion of Aldh1a2 and is rescued by exogenously supplied retinoic acid. CONCLUSION: Zic transcription factors function in patterning hindbrain motor neurons through their regulation of embryonic retinoic acid signaling.


Asunto(s)
Rombencéfalo/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Sistema Enzimático del Citocromo P-450/genética , Humanos , Neuronas/metabolismo , Retinal-Deshidrogenasa/genética , Ácido Retinoico 4-Hidroxilasa , Nervio Vago/citología , Nervio Vago/metabolismo , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA