Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(681): eabq5068, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724241

RESUMEN

Immunogenicity against intravitreally administered brolucizumab has been previously described and associated with cases of severe intraocular inflammation, including retinal vasculitis/retinal vascular occlusion (RV/RO). The presence of antidrug antibodies (ADAs) in these patients led to the initial hypothesis that immune complexes could be key mediators. Although the formation of ADAs and immune complexes may be a prerequisite, other factors likely contribute to some patients having RV/RO, whereas the vast majority do not. To identify and characterize the mechanistic drivers underlying the immunogenicity of brolucizumab and the consequence of subsequent ADA-induced immune complex formation, a translational approach was performed to bridge physicochemical characterization, structural modeling, sequence analysis, immunological assays, and a quantitative systems pharmacology model that mimics physiological conditions within the eye. This approach revealed that multiple factors contributed to the increased immunogenic potential of brolucizumab, including a linear epitope shared with bacteria, non-natural surfaces due to the single-chain variable fragment format, and non-native drug species that may form over prolonged time in the eye. Consideration of intraocular drug pharmacology and disease state in a quantitative systems pharmacology model suggested that immune complexes could form at immunologically relevant concentrations modulated by dose intensity. Assays using circulating immune cells from treated patients or treatment-naïve healthy volunteers revealed the capacity of immune complexes to trigger cellular responses such as enhanced antigen presentation, platelet aggregation, endothelial cell activation, and cytokine release. Together, these studies informed a mechanistic understanding of the clinically observed immunogenicity of brolucizumab and associated cases of RV/RO.


Asunto(s)
Complejo Antígeno-Anticuerpo , Análisis de Causa Raíz , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inflamación , Inhibidores de la Angiogénesis , Inyecciones Intravítreas
2.
Pharmaceutics ; 14(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745826

RESUMEN

The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile-from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.

3.
J Pharm Biomed Anal ; 192: 113650, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33065403

RESUMEN

Identification of molecular liabilities and implementation of mitigation strategies are key aspects that need to be considered by pharmaceutical companies developing therapeutic proteins. In the field of monoclonal antibodies, an efficient and streamlined process known as developability assessment is used for the selection of the "fittest" candidate. Other protein modalities, have in most cases only a limited number of possible candidates, requiring a paradigm change to a concept of candidate enabling. The assessment of liabilities at early project phases with the possibility to re-engineer candidates becomes essential for the success of these projects. Each protein possesses a unique stability profile resulting from the interplay of conformational, colloidal, chemical and physical stability attributes. All of these attributes strongly depend on external factors. Conformational and colloidal stability profiles of three non-immunoglobulin domain based proteins, namely Carbonic anhydrase, Ovalbumin and Thyroglobulin, and of two monoclonal antibodies were assessed in dependence of solution pH, ionic strength and varying buffering agents. The impact of screened external factors on proteins' stability attributes varied significantly, indicating presence of molecule specific liabilities. Screening of such a broad space of conditions at early project phases is only feasible using low-material consuming, high-throughput analytical methods as exemplified in this study.


Asunto(s)
Anticuerpos Monoclonales , Concentración Osmolar , Estabilidad Proteica
4.
MAbs ; 11(8): 1464-1478, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462177

RESUMEN

Heavy chain (Hc) heterodimers represent a majority of bispecific antibodies (bsAbs) under clinical development. Although recent technologies achieve high levels of Hc heterodimerization (HD), traces of homodimer contaminants are often present, and as a consequence robust purification techniques for generating highly pure heterodimers in a single step are needed. Here, we describe two different purification methods that exploit differences in Protein A (PA) or Protein G (PG) avidity between homo- and heterodimers. Differential elution between species was enabled by removing PA or PG binding in one of the Hcs of the bsAb. The PA method allowed the avidity purification of heterodimers based on the VH3 subclass, which naturally binds PA and interferes with separation, by using a combination of IgG3 Fc and a single amino acid change in VH3, N82aS. The PG method relied on a combination of three mutations that completely disrupts PG binding, M428G/N434A in IgG1 Fc and K213V in IgG1 CH1. Both methods achieved a high level of heterodimer purity as single-step techniques without Hc HD (93-98%). Since PA and PG have overlapping binding sites with the neonatal Fc receptor (FcRn), we investigated the effects of our engineering both in vitro and in vivo. Mild to moderate differences in FcRn binding and Fc thermal stability were observed, but these did not significantly change the serum half-lives of engineered control antibodies and heterodimers. The methods are conceptually compatible with various Hc HD platforms such as BEAT® (Bispecific Engagement by Antibodies based on the T cell receptor), in which the PA method has already been successfully implemented.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales , Proteínas Bacterianas/química , Fragmentos Fc de Inmunoglobulinas , Proteína Estafilocócica A/química , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/aislamiento & purificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación
5.
Front Microbiol ; 10: 494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949141

RESUMEN

Ocean acidification and warming are two main consequences of climate change that can directly affect biological and ecosystem processes in marine habitats. The Arctic Ocean is the region of the world experiencing climate change at the steepest rate compared with other latitudes. Since marine planktonic microorganisms play a key role in the biogeochemical cycles in the ocean it is crucial to simultaneously evaluate the effect of warming and increasing CO2 on marine microbial communities. In 20 L experimental microcosms filled with water from a high-Arctic fjord (Svalbard), we examined changes in phototrophic and heterotrophic microbial abundances and processes [bacterial production (BP) and mortality], and viral activity (lytic and lysogenic) in relation to warming and elevated CO2. The summer microbial plankton community living at 1.4°C in situ temperature, was exposed to increased CO2 concentrations (135-2,318 µatm) in three controlled temperature treatments (1, 6, and 10°C) at the UNIS installations in Longyearbyen (Svalbard), in summer 2010. Results showed that chlorophyll a concentration decreased at increasing temperatures, while BP significantly increased with pCO2 at 6 and 10°C. Lytic viral production was not affected by changes in pCO2 and temperature, while lysogeny increased significantly at increasing levels of pCO2, especially at 10°C (R 2 = 0.858, p = 0.02). Moreover, protistan grazing rates showed a positive interaction between pCO2 and temperature. The averaged percentage of bacteria grazed per day was higher (19.56 ± 2.77% d-1) than the averaged percentage of lysed bacteria by virus (7.18 ± 1.50% d-1) for all treatments. Furthermore, the relationship among microbial abundances and processes showed that BP was significantly related to phototrophic pico/nanoflagellate abundance in the 1°C and the 6°C treatments, and BP triggered viral activity, mainly lysogeny at 6 and 10°C, while bacterial mortality rates was significantly related to bacterial abundances at 6°C. Consequently, our experimental results suggested that future increases in water temperature and pCO2 in Arctic waters will produce a decrease of phytoplankton biomass, enhancement of BP and changes in the carbon fluxes within the microbial food web. All these heterotrophic processes will contribute to weakening the CO2 sink capacity of the Arctic plankton community.

6.
Sci Rep ; 7(1): 1247, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28455523

RESUMEN

Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton respiration may be stimulated in the light is particularly relevant for the high Arctic where plankton communities experience continuous daylight in spring and summer. Here we demonstrate that plankton community respiration evaluated under the continuous daylight conditions present in situ, tends to be higher than that evaluated in the dark. The ratio between community respiration measured in the light (Rlight) and in the dark (Rdark) increased as the 2/3 power of Rlight so that the Rlight:Rdark ratio increased from an average value of 1.37 at the median Rlight measured here (3.62 µmol O2 L-1 d-1) to an average value of 17.56 at the highest Rlight measured here (15.8 µmol O2 L-1 d-1). The role of respiratory processes as a source of CO2 in the Arctic has, therefore, been underestimated and is far more important than previously believed, particularly in the late spring, with 24 h photoperiods, when community respiration rates are highest.


Asunto(s)
Dióxido de Carbono/metabolismo , Oscuridad , Metabolismo Energético , Luz , Plancton/metabolismo , Plancton/efectos de la radiación , Regiones Árticas , Oxidación-Reducción , Estaciones del Año
7.
J Biol Chem ; 292(23): 9745-9759, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28450393

RESUMEN

Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/ß, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/ß constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoglobulina A , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G , Inmunoglobulina M , Multimerización de Proteína , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Cristalografía por Rayos X , Humanos , Inmunoglobulina A/química , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina M/química , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Dominios Proteicos , Estructura Cuaternaria de Proteína
8.
PLoS One ; 8(1): e54027, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342065

RESUMEN

The proportion in which carbon and growth-limiting nutrients are exported from the oceans' productive surface layer to the deep sea is a crucial parameter in models of the biological carbon pump. Based on >400 vertical flux observations of particulate organic carbon (POC) and nitrogen (PON) from the European Arctic Ocean we show the common assumption of constant C:N stoichiometry not to be met. Exported POC:PON ratios exceeded the classical Redfield atomic ratio of 6.625 in the entire region, with the largest deviation in the deep Central Arctic Ocean. In this part the mean exported POC:PON ratio of 9.7 (a:a) implies c. 40% higher carbon export compared to Redfield-based estimates. When spatially integrated, the potential POC export in the European Arctic was 10-30% higher than suggested by calculations based on constant POC:PON ratios. We further demonstrate that the exported POC:PON ratio varies regionally in relation to nitrate-based new production over geographical scales that range from the Arctic to the subtropics, being highest in the least productive oligotrophic Central Arctic Ocean and subtropical gyres. Accounting for variations in export stoichiometry among systems of different productivity will improve the ability of models to resolve regional patterns in carbon export and, hence, the oceans' contribution to the global carbon cycle will be predicted more accurately.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Océanos y Mares
9.
Ecol Appl ; 23(8): 1745-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24555307

RESUMEN

This synthesis study assesses recent changes of Arctic Ocean physical parameters using a unique collection of observations from the 2000s and places them in the context of long-term climate trends and variability. Our analysis demonstrates that the 2000s were an exceptional decade with extraordinary upper Arctic Ocean freshening and intermediate Atlantic water warming. We note that the Arctic Ocean is characterized by large amplitude multi-decadal variability in addition to a long-term trend, making the link of observed changes to climate drivers problematic. However, the exceptional magnitude of recent high-latitude changes (not only oceanic, but also ice and atmospheric) strongly suggests that these recent changes signify a potentially irreversible shift of the Arctic Ocean to a new climate state. These changes have important implications for the Arctic Ocean's marine ecosystem, especially those components that are dependent on sea ice or that have temperature-dependent sensitivities or thresholds. Addressing these and other questions requires a carefully orchestrated combination of sustained multidisciplinary observations and advanced modeling.


Asunto(s)
Cambio Climático , Océanos y Mares , Regiones Árticas , Monitoreo del Ambiente , Agua Dulce , Temperatura , Factores de Tiempo
10.
Ambio ; 41(1): 1-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22270702

RESUMEN

We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.


Asunto(s)
Clima , Conservación de los Recursos Naturales , Planeta Tierra , Regiones Árticas , Ecosistema , Monitoreo del Ambiente , Efecto Invernadero , Modelos Biológicos , Ciencia
11.
Ambio ; 41(1): 44-55, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22270704

RESUMEN

The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.


Asunto(s)
Cambio Climático , Ecosistema , Cubierta de Hielo , Regiones Árticas , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Biología Marina , Modelos Teóricos , Océanos y Mares , Plancton/crecimiento & desarrollo , Estaciones del Año
12.
J Mol Biol ; 415(4): 635-48, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22100449

RESUMEN

Sol i 2 is a potent allergen from the venom of red imported fire ant, which contains allergens Sol i 1, Sol i 2, Sol i 3, and Sol i 4 that are known to be powerful triggers of anaphylaxis. Sol i 2 causes IgE antibody production in about one-third of individuals stung by fire ants. Baculovirus recombinant dimeric Sol i 2 was crystallized as a native and selenomethionyl-derivatized protein, and its structure has been determined by single-wavelength anomalous dispersion at 2.6 Å resolution. The overall fold of each subunit consists of five helices that enclose a central hydrophobic cavity. The structure is stabilized by three intramolecular disulfide bridges and one intermolecular disulfide bridge. The nearest structural homologue is the sequence-unrelated odorant binding protein and pheromone binding protein LUSH of the fruit fly Drosophila, which may suggest a similar biological function. To test this hypothesis, we measured the reversible binding of various pheromones, plant odorants, and other ligands to Sol i 2 by the changes in N-phenyl-1-naphthylamine fluorescence emission upon binding of ligands that compete with N-phenyl-1-naphthylamine. The highest binding affinity was observed for hydrophobic ligands such as aphid alarm pheromone (E)-ß-farnesene, analogs of ant alarm pheromones, and plant volatiles decane, undecane, and ß-caryophyllene. Conceivably, Sol i 2 may play a role in capturing and/or transporting small hydrophobic ligands such as pheromones, odors, fatty acids, or short-living hydrophobic primers. Molecular surface analysis, in combination with sequence alignment, can explain the serological cross-reactivity observed between some ant species.


Asunto(s)
Alérgenos/química , Venenos de Hormiga/química , Proteínas de Insectos/química , Alérgenos/metabolismo , Secuencia de Aminoácidos , Animales , Venenos de Hormiga/inmunología , Venenos de Hormiga/metabolismo , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Proteínas de Insectos/metabolismo , Ligandos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
13.
Mol Cell ; 43(4): 550-60, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21855795

RESUMEN

In Caulobacter crescentus, phosphorylation of key regulators is coordinated with the second messenger cyclic di-GMP to drive cell-cycle progression and differentiation. The diguanylate cyclase PleD directs pole morphogenesis, while the c-di-GMP effector PopA initiates degradation of the replication inhibitor CtrA by the AAA+ protease ClpXP to license S phase entry. Here, we establish a direct link between PleD and PopA reliant on the phosphodiesterase PdeA and the diguanylate cyclase DgcB. PdeA antagonizes DgcB activity until the G1-S transition, when PdeA is degraded by the ClpXP protease. The unopposed DgcB activity, together with PleD activation, upshifts c-di-GMP to drive PopA-dependent CtrA degradation and S phase entry. PdeA degradation requires CpdR, a response regulator that delivers PdeA to the ClpXP protease in a phosphorylation-dependent manner. Thus, CpdR serves as a crucial link between phosphorylation pathways and c-di-GMP metabolism to mediate protein degradation events that irreversibly and coordinately drive bacterial cell-cycle progression and development.


Asunto(s)
Caulobacter crescentus/citología , Ciclo Celular/fisiología , Modelos Biológicos , Sistemas de Mensajero Secundario , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Polaridad Celular , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Fosforilación
14.
Structure ; 15(8): 915-27, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17697997

RESUMEN

Cyclic di-guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial second messenger involved in the regulation of cell surface-associated traits and persistence. We have determined the crystal structure of PleD from Caulobacter crescentus, a response regulator with a diguanylate cyclase (DGC) domain, in its activated form. The BeF(3)(-) modification of its receiver domain causes rearrangement with respect to an adaptor domain, which, in turn, promotes dimer formation, allowing for the efficient encounter of two symmetric catalytic domains. The substrate analog GTPalphaS and two putative cations are bound to the active sites in a manner similar to adenylate cyclases, suggesting an analogous two-metal catalytic mechanism. An allosteric c-di-GMP-binding mode that crosslinks DGC and an adaptor domain had been identified before. Here, a second mode is observed that crosslinks the DGC domains within a PleD dimer. Both modes cause noncompetitive product inhibition by domain immobilization.


Asunto(s)
Proteínas Bacterianas/química , Retroalimentación Fisiológica/fisiología , Liasas de Fósforo-Oxígeno/química , Sistemas de Mensajero Secundario , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Caulobacter crescentus/enzimología , Cristalografía por Rayos X , Dimerización , Relación Dosis-Respuesta a Droga , Activación Enzimática , Proteínas de Escherichia coli , Guanosina Trifosfato/farmacología , Concentración 50 Inhibidora , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Liasas de Fósforo-Oxígeno/análisis , Liasas de Fósforo-Oxígeno/metabolismo , Fosforilación , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
15.
J Biol Chem ; 282(40): 29170-7, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17640875

RESUMEN

Diguanylate cyclases (DGCs) are key enzymes of second messenger signaling in bacteria. Their activity is responsible for the condensation of two GTP molecules into the signaling compound cyclic di-GMP. Despite their importance and abundance in bacteria, catalytic and regulatory mechanisms of this class of enzymes are poorly understood. In particular, it is not clear if oligomerization is required for catalysis and if it represents a level for activity control. To address this question we perform in vitro and in vivo analysis of the Caulobacter crescentus diguanylate cyclase PleD. PleD is a member of the response regulator family with two N-terminal receiver domains and a C-terminal diguanylate cyclase output domain. PleD is activated by phosphorylation but the structural changes inflicted upon activation of PleD are unknown. We show that PleD can be specifically activated by beryllium fluoride in vitro, resulting in dimerization and c-di-GMP synthesis. Cross-linking and fractionation experiments demonstrated that the DGC activity of PleD is contained entirely within the dimer fraction, confirming that the dimer represents the enzymatically active state of PleD. In contrast to the catalytic activity, allosteric feedback regulation of PleD is not affected by the activation status of the protein, indicating that activation by dimerization and product inhibition represent independent layers of DGC control. Finally, we present evidence that dimerization also serves to sequester activated PleD to the differentiating Caulobacter cell pole, implicating protein oligomerization in spatial control and providing a molecular explanation for the coupling of PleD activation and subcellular localization.


Asunto(s)
Proteínas Bacterianas/química , Sitio Alostérico , Secuencias de Aminoácidos , Berilio/química , Berilio/farmacología , Calorimetría , Catálisis , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Cristalización , Dimerización , Activación Enzimática , Escherichia coli/enzimología , Fluoruros/química , Fluoruros/farmacología , Mutación , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA