Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(4): e4942, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501464

RESUMEN

IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the ß subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the ß subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .


Asunto(s)
Bacillus , ATPasas de Translocación de Protón , Animales , Bovinos , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Proteínas/química , Bacterias/metabolismo , Mitocondrias/metabolismo , Bacillus/genética , Adenosina Trifosfato/metabolismo
2.
iScience ; 26(5): 106626, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37192978

RESUMEN

F1-ATPase (F1) is an ATP-driven rotary motor protein ubiquitously found in many species as the catalytic portion of FoF1-ATP synthase. Despite the highly conserved amino acid sequence of the catalytic core subunits: α and ß, F1 shows diversity in the maximum catalytic turnover rate Vmax and the number of rotary steps per turn. To study the design principle of F1, we prepared eight hybrid F1s composed of subunits from two of three genuine F1s: thermophilic Bacillus PS3 (TF1), bovine mitochondria (bMF1), and Paracoccus denitrificans (PdF1), differing in the Vmax and the number of rotary steps. The Vmax of the hybrids can be well fitted by a quadratic model highlighting the dominant roles of ß and the couplings between α-ß. Although there exist no simple rules on which subunit dominantly determines the number of steps, our findings show that the stepping behavior is characterized by the combination of all subunits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...