Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(17): 5433-5445, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616385

RESUMEN

Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.


Asunto(s)
Estrés Oxidativo , Xenobióticos , Humanos , Especies Reactivas de Oxígeno , Células Hep G2 , Estudios Prospectivos , Relación Estructura-Actividad
2.
Chem Res Toxicol ; 30(4): 923-933, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-27982581

RESUMEN

A quantitative dynamics pathway map of the Nrf2-mediated oxidative stress response and p53-related DNA damage response pathways as well as the cross-talk between these pathways has not systematically been defined. To allow the dynamic single cell evaluation of these pathways, we have used BAC-GFP recombineering to tag for each pathway's three key components: for the oxidative stress response, Keap1-GFP, Nrf2-GFP, and Srxn1-GFP; for the DNA damage response, 53bp1-GFP, p53-GFP, and p21-GFP. The dynamic activation of these individual components was assessed using quantitative high throughput confocal microscopy after treatment with a broad concentration range of diethyl maleate (DEM; to induce oxidative stress) and etoposide (to induce DNA damage). DEM caused a rapid activation of Nrf2, which returned to baseline levels at low concentrations but remained sustained at high concentrations. Srxn1-GFP induction and Keap1-GFP translocation to autophagosomes followed later, with upper boundaries reached at high concentrations, close to the onset of cell death. Etoposide caused rapid accumulation of 53bp1-GFP in DNA damage foci, which was later followed by the concentration dependent nuclear accumulation of p53-GFP and subsequent induction of p21-GFP. While etoposide caused activation of Srxn1-GFP, a modest activation of DNA damage reporters was observed for DEM at high concentrations. Interestingly, Nrf2 knockdown caused an inhibition of the DNA damage response at high concentrations of etoposide, while Keap1 knockdown caused an enhancement of the DNA damage response already at low concentrations of etoposide. Knockdown of p53 did not affect the oxidative stress response. Altogether, the current stress response landscapes provide insight in the time course responses of and cross-talk between oxidative stress and DNA-damage and defines the tipping points where cell injury may switch from adaptation to injury.


Asunto(s)
Daño del ADN/efectos de los fármacos , Etopósido/toxicidad , Maleatos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Genes Reporteros , Células Hep G2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
3.
Toxicol Lett ; 232(2): 403-12, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25448281

RESUMEN

The zebrafish embryo (ZFE) is a promising alternative, non-rodent model in toxicology, which has an advantage over the traditionally used models as it contains complete biological complexity and provides a medium to high-throughput setting. Here, we assess how the ZFE compares to the traditionally used models for liver toxicity testing, i.e., in vivo mouse and rat liver, in vitro mouse and rat hepatocytes, and primary human hepatocytes. For this comparison, we analyzed gene expression changes induced by three model compounds for cholestasis, steatosis, and necrosis. The three compounds, cyclosporine A, amiodarone, and acetaminophen, were chosen because of their relevance to human toxicity and these compounds displayed hepatotoxic-specific changes in the mouse in vivo data. Compound induced expression changes in the ZFE model shared similarity with both in vivo and in vitro. Comparison on single gene level revealed the presence of model specific changes and no clear concordance across models. However, concordance was identified on the pathway level. Specifically, the pathway "regulation of metabolism - bile acids regulation of glucose and lipid metabolism via FXR" was affected across all models and compounds. In conclusion, our study with three hepatotoxic model compounds shows that the ZFE model is at least as comparable to traditional models in identifying hepatotoxic activity and has the potential for use as a pre-screen to determine the hepatotoxic potential of compounds.


Asunto(s)
Acetaminofén/toxicidad , Amiodarona/toxicidad , Analgésicos no Narcóticos/toxicidad , Antiarrítmicos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ciclosporina/toxicidad , Embrión no Mamífero/efectos de los fármacos , Inmunosupresores/toxicidad , Transcriptoma/efectos de los fármacos , Pez Cebra/fisiología , Animales , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...