Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Dev Technol ; 26(10): 1130-1135, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34751078

RESUMEN

An efficient protocol for assessing both the chemical and physical stability of cocrystalline forms of active pharmaceutical ingredients (APIs) is proposed. In this protocol, the cocrystalline material is used to prepare two standard formulations, mimicking wet granulations, to make low-dose tablets. After designed stress testing at a range of temperatures and RH conditions, degradant formation is modeled from the data using ASAPprime® to determine if the tablets have a minimum of a one-year shelf-life (25 °C/60% RH open). When the cocrystals provide a kinetic solubility enhancement over the un-complexed API, a physical assessment of the cocrystal stability is carried out using the same tablets at selected stress conditions. For this assessment, kinetic solubility (where the amount of buffer used to dissolve the tablet is adjusted to completely dissolve the cocrystalline form but leave most of the un-complexed form out of solution) changes are used to indicate whether there is a significant risk for physical instability on long-term storage. This process was exemplified using model cocrystals of APIs.


Asunto(s)
Cristalización , Composición de Medicamentos , Solubilidad , Comprimidos
2.
MAbs ; 12(1): 1709322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31924119

RESUMEN

CX3CR1 has been identified as a highly attractive target for several therapeutic interventions. Despite this potential, no potent antagonists, either small molecule or monoclonal antibody, have been identified. Here we describe the lead finding and engineering approach that lead to the identification of BI 655088, a potent biotherapeutic antagonist to CX3CR1. BI 655088 is a potent CX3CR1 antagonist that, upon therapeutic dosing, significantly inhibits plaque progression in the standard mouse model of atherosclerosis. BI 655088 represents a novel and highly selective biotherapeutic that could reduce inflammation in the atherosclerotic plaque when added to standard of care treatment including statins, which could result in a significant decrease in atherothrombotic events in patients with existing cardiovascular disease.


Asunto(s)
Aterosclerosis/patología , Receptor 1 de Quimiocinas CX3C/antagonistas & inhibidores , Anticuerpos de Dominio Único/farmacología , Animales , Progresión de la Enfermedad , Humanos , Macaca fascicularis , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...