Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1157337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293223

RESUMEN

The Gulf of Cádiz is a tectonically active continental margin with over sixty mud volcanoes (MV) documented, some associated with active methane (CH4) seepage. However, the role of prokaryotes in influencing this CH4 release is largely unknown. In two expeditions (MSM1-3 and JC10) seven Gulf of Cádiz MVs (Porto, Bonjardim, Carlos Ribeiro, Captain Arutyunov, Darwin, Meknes, and Mercator) were analyzed for microbial diversity, geochemistry, and methanogenic activity, plus substrate amended slurries also measured potential methanogenesis and anaerobic oxidation of methane (AOM). Prokaryotic populations and activities were variable in these MV sediments reflecting the geochemical heterogeneity within and between them. There were also marked differences between many MV and their reference sites. Overall direct cell numbers below the SMTZ (0.2-0.5 mbsf) were much lower than the general global depth distribution and equivalent to cell numbers from below 100 mbsf. Methanogenesis from methyl compounds, especially methylamine, were much higher than the usually dominant substrates H2/CO2 or acetate. Also, CH4 production occurred in 50% of methylated substrate slurries and only methylotrophic CH4 production occurred at all seven MV sites. These slurries were dominated by Methanococcoides methanogens (resulting in pure cultures), and prokaryotes found in other MV sediments. AOM occurred in some slurries, particularly, those from Captain Arutyunov, Mercator and Carlos Ribeiro MVs. Archaeal diversity at MV sites showed the presence of both methanogens and ANME (Methanosarcinales, Methanococcoides, and ANME-1) related sequences, and bacterial diversity was higher than archaeal diversity, dominated by members of the Atribacterota, Chloroflexota, Pseudomonadota, Planctomycetota, Bacillota, and Ca. "Aminicenantes." Further work is essential to determine the full contribution of Gulf of Cádiz mud volcanoes to the global methane and carbon cycles.

2.
EJNMMI Radiopharm Chem ; 7(1): 5, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35306596

RESUMEN

BACKGROUND: Flumazenil (FMZ) is a functionally silent imidazobenzodiazepine which binds to the benzodiazepine binding site of approximately 75% of the brain γ-aminobutyric acid-A receptors (GABAARs). Positron Emission Tomography (PET) imaging of the GABAARs with [11C]FMZ has been used to evidence alterations in neuronal density, to assess target engagement of novel pharmacological agents, and to study disorders such as epilepsy and Huntington's disease. Despite the potential of FMZ PET imaging the short half-life (t1/2) of carbon-11 (20 min) has limited the more widespread clinical use of [11C]FMZ. The fluorine-18 (18F) isotopologue with a longer t1/2 (110 min) is ideally suited to address this drawback. However, the majority of current radiochemical methods for the synthesis of [18F]FMZ are non-trivial and low yielding. We report a robust, automated protocol that is good manufacturing practice (GMP) compatible, and yields multi-patient doses of [18F]FMZ. RESULTS: The fully automated synthesis was developed on the Trasis AllinOne (AIO) platform using a single-use cassette. [18F]FMZ was synthesized in a one-step procedure from [18F]fluoride, via a copper-mediated 18F-fluorination of a boronate ester precursor. Purification was performed by semi-preparative radio-HPLC and the collected fraction formulated directly into the final product vial. The overall process from start of synthesis to delivery of product is approximately 55 min. Starting with an initial activity of 23.6 ± 5.8 GBq (n = 3) activity yields of [18F]FMZ were 8.0 ± 1 GBq (n = 3). The synthesis was successfully reproduced at two independent sites, where the product passed quality control release criteria in line with the European Pharmacopoeia standards and ICH Q3D(R1) guidelines to be suitable for human use. CONCLUSION: Reported is a fully automated cassette-based synthesis of [18F]FMZ that is Good Manufacturing Practice (GMP) compatible and produces multi-patient doses of [18F]FMZ.

3.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048384

RESUMEN

The genomes of two Methanococcoides spp. that were isolated from marine sediments and are capable of carrying out methanogenesis from choline and other methylotrophic substrates were sequenced. The average nucleotide identity and in silico DNA-DNA hybridization analyses demonstrate that they represent species different from those previously described.

4.
FEMS Microbiol Ecol ; 91(2): 1-18, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25764553

RESUMEN

Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments.


Asunto(s)
Archaea/genética , ADN de Archaea/genética , Estuarios , Sedimentos Geológicos/microbiología , Salinidad , Archaea/clasificación , Biodiversidad , Enzimas de Restricción del ADN/genética , Genes de ARNr , Filogenia , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
5.
Appl Environ Microbiol ; 80(1): 289-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162571

RESUMEN

Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.


Asunto(s)
Betaína/metabolismo , Metano/metabolismo , Methanosarcinaceae/metabolismo , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Dimetilaminas/metabolismo , Metabolismo Energético , Methanosarcinaceae/crecimiento & desarrollo , Metilaminas/metabolismo
6.
Appl Environ Microbiol ; 78(23): 8298-303, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23001649

RESUMEN

Choline (N,N,N-trimethylethanolamine), which is widely distributed in membrane lipids and is a component of sediment biota, has been shown to be utilized anaerobically by mixed prokaryote cultures to produce methane but not by pure cultures of methanogens. Here, we show that five recently isolated Methanococcoides strains from a range of sediments (Aarhus Bay, Denmark; Severn Estuary mudflats at Portishead, United Kingdom; Darwin Mud Volcano, Gulf of Cadiz; Napoli mud volcano, eastern Mediterranean) can directly utilize choline for methanogenesis producing ethanolamine, which is not further metabolized. Di- and monomethylethanolamine are metabolic intermediates that temporarily accumulate. Consistent with this, dimethylethanolamine was shown to be another new growth substrate, but monomethylethanolamine was not. The specific methanogen inhibitor 2-bromoethanesulfonate (BES) inhibited methane production from choline. When choline and trimethylamine are provided together, diauxic growth occurs, with trimethylamine being utilized first, and then after a lag (∼7 days) choline is metabolized. Three type strains of Methanococcoides (M. methylutens, M. burtonii, and M. alaskense), in contrast, did not utilize choline. However, two of them (M. methylutens and M. burtonii) did metabolize dimethylethanolamine. These results extend the known substrates that can be directly utilized by some methanogens, giving them the advantage that they would not be reliant on bacterial syntrophs for their substrate supply.


Asunto(s)
Colina/metabolismo , Deanol/metabolismo , Microbiología Ambiental , Metano/metabolismo , Methanosarcinaceae/aislamiento & purificación , Methanosarcinaceae/metabolismo , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Etanolamina/metabolismo , Methanosarcinaceae/clasificación , Methanosarcinaceae/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...