Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340838

RESUMEN

Vairimorpha (Microsporidia: Nosematidae) is a microsporidian that infects honey bees especially in winter. Fumagillin can reduce infections, but whether overwintering survival is improved is unclear. The diet also may influence the severity of Nosema infections. We examined the relationship between Nosema and colony size and survival in hives overwintered in cold storage facilities. In year 1, no Fumagillin treatments were applied. Colony size and survival after cold storage and almond bloom were comparable between groups with high and low pre-cold storage infections. In year 2, size and survival were compared among colonies with and without Fumagillin treatment that were fed either pollen or protein supplement prior to overwintering. Colonies treated with Fumagillin had lower spore numbers than untreated, but colony sizes and survival were similar among the treatments. However, more colonies with zero spores per bee could be rented for almond pollination and were alive after bloom than those averaging >1 million spores per bee. Fat body metrics can affect overwintering success. In both years, fat body weights and protein concentrations increased, and lipid concentrations decreased while bees were in cold storage. Fat body metrics did not differ with Nosema infection levels. However, Fumagillin negatively affected pre-cold storage fat body protein concentrations and colony sizes after cold storage and almond bloom. Treating with Fumagillin before overwintering in cold storage might result in greater colony survival if spore numbers are high, but undetectable or even negative effects when spore numbers are low.

2.
J Econ Entomol ; 116(4): 1078-1090, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37335908

RESUMEN

For over a decade, high percentages of honey bee colonies have been perishing during the winter creating economic hardship to beekeepers and growers of early-season crops requiring pollination. A way to reduce colony losses might be moving hives into cold storage facilities for the winter. We explored factors that could affect the size and survival of colonies overwintered in cold storage and then used for almond pollination. The factors were when hives were put into cold storage and their location prior to overwintering. We found that colonies summered in North Dakota, USA and moved to cold storage in October were larger after cold storage and almond pollination than those moved in November. Colony location prior to overwintering also affected size and survival. Colonies summered in southern Texas, USA and moved to cold storage in November were smaller after cold storage and almond pollination than those from North Dakota. The colonies also were smaller than those overwintered in Texas apiaries. Fat body metrics of bees entering cold storage differed between summer locations. North Dakota bees had higher lipid and lower protein concentrations than Texas bees. While in cold storage, fat bodies gained weight, protein concentrations increased, and lipids decreased. The decrease in lipid concentrations was correlated with the amount of brood reared while colonies were in cold storage. Our study indicates that in northern latitudes, overwintering survival might be affected by when colonies are put into cold storage and that colonies summered in southern latitudes should be overwintered there.


Asunto(s)
Himenópteros , Prunus dulcis , Abejas , Animales , Estaciones del Año , North Dakota , Texas , Lípidos
3.
J Insect Physiol ; 143: 104442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36195173

RESUMEN

Honey bee colony health is a function of the individuals, their interactions, and the environment. A major goal of honey bee research is to understand how colonies respond to stress. Individual-level studies of the bee stress response are tractable, but their results do not always translate to the colony level. Nutritional stress is an important factor in colony declines. Nutrition studies are typically conducted on individual nurse workers (nurses), who are primarily responsible for converting pollen into brood. Nurse physiology is sensitive to both pollen and pheromones, which communicate signals among colony members. Here, we asked whether pheromones influence nurse nutrient pathways involved in brood care, and whether diet influences colony communication. We exposed caged, nurse-aged workers to different combinations of pheromones and pollen, and measured traits related to brood care. We found that pheromones enhanced pollen-dependent processes such as hypopharyngeal gland growth and mrjp1 expression, and buffered the negative effects of starvation. Pollen also enhanced how nurse phenotypes respond to pheromones. Therefore, diet and pheromones interact to influence nurse nutritional physiology and aspects of brood care. These findings have implications for studying colony function and health in an increasingly stressful climate.


Asunto(s)
Feromonas , Polen , Abejas , Animales , Feromonas/metabolismo , Dieta
4.
Insects ; 12(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801848

RESUMEN

Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.

5.
Exp Appl Acarol ; 82(4): 455-473, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33125599

RESUMEN

Varroa destructor is an ectoparasitic mite of immature and adult honey bees that can transmit several single-stranded RNA viruses to its host. Varroa reproduce in brood cells, and mite populations increase as colonies produce brood in spring and summer. Mite numbers also can sharply rise, particularly in the fall, by the migration of varroa into hives on foragers. Colonies with high levels of varroa and viruses often die over the winter. Feeding colonies pollen might keep virus levels low and improve survival because of the positive effects of pollen on immunity and colony growth. We compared varroa and virus levels and overwinter survival in colonies with (fed) and without (unfed) supplemental pollen. We also measured the frequency of capturing foragers with mites (FWM) at colony entrances to determine its relationship to varroa and virus levels. Colonies fed supplemental pollen were larger than unfed colonies and survived longer. Varroa populations and levels of Deformed wing virus (DWV) rose throughout the season, and were similar between fed and unfed colonies. The growth of varroa populations was correlated with FWM in fed and unfed colonies, and significantly affected DWV levels. Increasing frequencies of FWM and the effects on varroa populations might reduce the positive influence of supplemental pollen on immune function. However, pollen feeding can stimulate colony growth and this can improve colony survival.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas , Polen , Estaciones del Año
6.
J Insect Physiol ; 109: 114-124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29990468

RESUMEN

Free-ranging herbivores have yearly life cycles that generate dynamic resource needs. Honey bee colonies also have a yearly life cycle that might generate nutritional requirements that differ between times of brood rearing and colony expansion in the spring and population contraction and preparation for overwintering in the fall. To test this, we analyzed polyfloral mixes of spring and fall pollens to determine if the nutrient composition differed with season. Next, we fed both types of seasonal pollens to bees reared in spring and fall. We compared the development of brood food glands (i.e., hypopharyngeal glands - HPG), and the expression of genes in the fat body between bees fed pollen from the same (in-season) or different season (out-of-season) when they were reared. Because pathogen challenges often heighten the effects of nutritional stress, we infected a subset of bees with Nosema to determine if bees responded differently to the infection depending on the seasonal pollen they consumed. We found that spring and fall pollens were similar in total protein and lipid concentrations, but spring pollens had higher concentrations of amino and fatty acids that support HPG growth and brood production. Bees responded differently when fed in vs. out of season pollen. The HPG of both uninfected and Nosema-infected spring bees were larger when they were fed spring (in-season) compared to fall pollen. Spring bees differentially regulated more than 200 genes when fed in- vs. out-of-season pollen. When infected with Nosema, approximately 400 genes showed different infection-induced expression patterns in spring bees depending on pollen type. In contrast, HPG size in fall bees was not affected by pollen type, though HPG were smaller in those infected with Nosema. Very few genes were differentially expressed with pollen type in uninfected (4 genes) and infected fall bees (5 genes). Pollen type did not affect patterns of infection-induced expression in fall bees. Our data suggest that physiological responses to seasonal pollens differ between bees reared in the spring and fall with spring bees being significantly more sensitive to pollen type especially when infected with Nosema. This study provides evidence that seasonal pollens may provide levels of nutrients that align with the activities of honey bees during their yearly colony cycle. The findings are important for the planning and establishment of forage plantings to sustain honey bees, and in the development of seasonal nutritional supplements fed to colonies when pollen is unavailable.


Asunto(s)
Abejas/fisiología , Polen/química , Estaciones del Año , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Arizona , Abejas/genética , Abejas/microbiología , Dieta , Glándulas Exocrinas/crecimiento & desarrollo , Cuerpo Adiposo , Microsporidiosis/fisiopatología , Nosema/fisiología , Transcriptoma
7.
J Econ Entomol ; 108(6): 2518-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318004

RESUMEN

Sublethal exposure to fungicides can affect honey bees (Apis mellifera L.) in ways that resemble malnutrition. These include reduced brood rearing, queen loss, and increased pathogen levels. We examined the effects of oral exposure to the fungicides boscalid and pyraclostrobin on factors affecting colony nutrition and immune function including pollen consumption, protein digestion, hemolymph protein titers, and changes in virus levels. Because the fungicides are respiratory inhibitors, we also measured ATP concentrations in flight muscle. The effects were evaluated in 3- and 7-d-old worker bees at high fungicide concentrations in cage studies, and at field-relevant concentrations in colony studies. Though fungicide levels differed greatly between the cage and colony studies, similar effects were observed. Hemolymph protein concentrations were comparable between bees feeding on pollen with and without added fungicides. However, in both cage and colony studies, bees consumed less pollen containing fungicides and digested less of the protein. Bees fed fungicide-treated pollen also had lower ATP concentrations and higher virus titers. The combination of effects we detected could produce symptoms that are similar to those from poor nutrition and weaken colonies making them more vulnerable to loss from additional stressors such as parasites and pathogens.


Asunto(s)
Abejas/efectos de los fármacos , Compuestos de Bifenilo/toxicidad , Carbamatos/toxicidad , Fungicidas Industriales/toxicidad , Herbivoria/efectos de los fármacos , Niacinamida/análogos & derivados , Pirazoles/toxicidad , Adenosina Trifosfato/metabolismo , Administración Oral , Animales , Abejas/metabolismo , Abejas/virología , Digestión/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/análisis , Hemolinfa/metabolismo , Intestinos/enzimología , Músculos/efectos de los fármacos , Músculos/metabolismo , Niacinamida/toxicidad , Péptido Hidrolasas/metabolismo , Polen/química , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...