Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
medRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39148854

RESUMEN

Immune related adverse events (irAEs) after immune checkpoint blockade (ICB) therapy occur in a significant proportion of cancer patients. To date, the circulating mediators of ICB-irAEs remain poorly understood. Using non-targeted mass spectrometry, here we identify the circulating bio-active lipid linoleoyl-lysophosphatidylcholine (LPC 18:2) as a modulator of ICB-irAEs. In three independent human studies of ICB treatment for solid tumor, loss of circulating LPC 18:2 preceded the development of severe irAEs across multiple organ systems. In both healthy humans and severe ICB-irAE patients, low LPC 18:2 was found to correlate with high blood neutrophilia. Reduced LPC 18:2 biosynthesis was confirmed in preclinical ICB-irAE models, and LPC 18:2 supplementation in vivo suppressed neutrophilia and tissue inflammation without impacting ICB anti-tumor response. Results indicate that circulating LPC 18:2 suppresses human ICB-irAEs, and LPC 18:2 supplementation may improve ICB outcomes by preventing severe inflammation while maintaining anti-tumor immunity.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39076001

RESUMEN

CONTEXT: Phenylacetylglutamine (PAGln) is a novel metabolite derived from gut microbial metabolism of dietary proteins, specifically phenylalanine, which may be linked to risks of adverse cardiovascular events. OBJECTIVE: We investigated whether higher plasma levels of PAGln were associated with a greater risk of incident coronary heart disease (CHD) and tested whether adherence to a plant-based diet, which characterizes habitual dietary patterns of animal and plant food intake, modified the associations. METHODS: We examined associations between plasma PAGln and risk of incident CHD over 11-16 years in a nested case-control study of 1520 women (760 incident cases and 760 controls) from the Nurses' Health Study. Separately, we analyzed relations between PAGln and dietary intakes measured through dietary records in the Women's Lifestyle Validation Study (n=725). RESULTS: Higher PAGln levels were related to a greater risk of CHD (p <0.05 for dose-response relationship). Higher PAGln was associated with greater red/processed meat intake and lower vegetable intake (p <0.05 for all). We found a significant interaction between PAGln and adherence to plant-based diet index (PDI) on CHD (Pinteraction=0.008); higher PAGln levels were associated with an increased risk of CHD (relative risk per 1 SD: 1.22 [95% CI: 1.05, 1.41]) among women with low PDI but not among those with high PDI. CONCLUSION: Higher PAGln was associated with higher risk of CHD, particularly in women with dietary patterns of eating more animal foods and fewer plant-based foods. Adherence to plant-based diets might attenuate unfavorable associations between a novel microbial metabolite and CHD risk.

3.
Arterioscler Thromb Vasc Biol ; 44(7): e196-e206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38841856

RESUMEN

BACKGROUND: Statin effects extend beyond low-density lipoprotein cholesterol reduction, potentially modulating the metabolism of bioactive lipids (BALs), crucial for biological signaling and inflammation. These bioactive metabolites may serve as metabolic footprints, helping uncover underlying processes linked to pleiotropic effects of statins and yielding a better understanding of their cardioprotective properties. This study aimed to investigate the impact of high-intensity statin therapy versus placebo on plasma BALs in the JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681), a randomized primary prevention trial involving individuals with low-density lipoprotein cholesterol <130 mg/dL and high-sensitivity C-reactive protein ≥2 mg/L. METHODS: Using a nontargeted mass spectrometry approach, over 11 000 lipid features were assayed from baseline and 1-year plasma samples from cardiovascular disease noncases from 2 nonoverlapping nested substudies: JUPITERdiscovery (n=589) and JUPITERvalidation (n=409). The effect of randomized allocation of rosuvastatin 20 mg versus placebo on BALs was examined by fitting a linear regression with delta values (∆=year 1-baseline) adjusted for age and baseline levels of each feature. Significant associations in discovery were analyzed in the validation cohort. Multiple comparisons were adjusted using 2-stage overall false discovery rate. RESULTS: We identified 610 lipid features associated with statin randomization with significant replication (overall false discovery rate, <0.05), including 26 with annotations. Statin therapy significantly increased levels of 276 features, including BALs with anti-inflammatory activity and arterial vasodilation properties. Concurrently, 334 features were significantly lowered by statin therapy, including arachidonic acid and proinflammatory and proplatelet aggregation BALs. By contrast, statin therapy reduced an eicosapentaenoic acid-derived hydroxyeicosapentaenoic acid metabolite, which may be related to impaired glucose metabolism. Additionally, we observed sex-related differences in 6 lipid metabolites and 6 unknown features. CONCLUSIONS: Statin allocation was significantly associated with upregulation of BALs with anti-inflammatory, antiplatelet aggregation and antioxidant properties and downregulation of BALs with proinflammatory and proplatelet aggregation activity, supporting the pleiotropic effects of statins beyond low-density lipoprotein cholesterol reduction.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Prevención Primaria , Rosuvastatina Cálcica , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Rosuvastatina Cálcica/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/sangre , Biomarcadores/sangre , Prevención Primaria/métodos , Factores de Tiempo , Resultado del Tratamiento , LDL-Colesterol/sangre , Lípidos/sangre , Dislipidemias/tratamiento farmacológico , Dislipidemias/sangre , Dislipidemias/diagnóstico , Lipidómica
4.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328113

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.

5.
Front Cardiovasc Med ; 10: 1229130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680562

RESUMEN

Introduction: Long-chain omega-3 polyunsaturated fatty acids (OM3 PUFA) are commonly used for cardiovascular disease prevention. High-dose eicosapentaenoic acid (EPA) is reported to reduce major adverse cardiovascular events (MACE); however, a combined EPA and docosahexaenoic acid (DHA) supplementation has not been proven to do so. This study aimed to evaluate the potential interaction between EPA and DHA levels on long-term MACE. Methods: We studied a cohort of 987 randomly selected subjects enrolled in the INSPIRE biobank registry who underwent coronary angiography. We used rapid throughput liquid chromatography-mass spectrometry to quantify the EPA and DHA plasma levels and examined their impact unadjusted, adjusted for one another, and fully adjusted for comorbidities, EPA + DHA, and the EPA/DHA ratio on long-term (10-year) MACE (all-cause death, myocardial infarction, stroke, heart failure hospitalization). Results: The average subject age was 61.5 ± 12.2 years, 57% were male, 41% were obese, 42% had severe coronary artery disease (CAD), and 311 (31.5%) had a MACE. The 10-year MACE unadjusted hazard ratio (HR) for the highest (fourth) vs. lowest (first) quartile (Q) of EPA was HR = 0.48 (95% CI: 0.35, 0.67). The adjustment for DHA changed the HR to 0.30 (CI: 0.19, 0.49), and an additional adjustment for baseline differences changed the HR to 0.36 (CI: 0.22, 0.58). Conversely, unadjusted DHA did not significantly predict MACE, but adjustment for EPA resulted in a 1.81-fold higher risk of MACE (CI: 1.14, 2.90) for Q4 vs. Q1. However, after the adjustment for baseline differences, the risk of MACE was not significant for DHA (HR = 1.37; CI: 0.85, 2.20). An EPA/DHA ratio ≥1 resulted in a lower rate of 10-year MACE outcomes (27% vs. 37%, adjusted p-value = 0.013). Conclusions: Higher levels of EPA, but not DHA, are associated with a lower risk of MACE. When combined with EPA, higher DHA blunts the benefit of EPA and is associated with a higher risk of MACE in the presence of low EPA. These findings can help explain the discrepant results of EPA-only and EPA/DHA mixed clinical supplementation trials.

6.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37159276

RESUMEN

BACKGROUNDThere is considerable heterogeneity in the effect of weight loss on metabolic function in people with obesity.METHODSWe evaluated muscle and liver insulin sensitivity, body composition, and circulating factors associated with insulin action before and after approximately 20% weight loss in women identified as "Responders" (n = 11) or "Non-responders" (n = 11), defined as the top (>75% increase) and bottom (<5% increase) quartiles of the weight loss-induced increase in glucose disposal rate (GDR) during a hyperinsulinemic-euglycemic clamp procedure, among 43 women with obesity (BMI: 44.1 ± 7.9 kg/m2).RESULTSAt baseline, GDR, which provides an index of muscle insulin sensitivity, and the hepatic insulin sensitivity index were more than 50% lower in Responders than Non-responders, but both increased much more after weight loss in Responders than Non-responders, which eliminated the differences between groups. Weight loss also caused greater decreases in intrahepatic triglyceride content and plasma adiponectin and PAI-1 concentrations in Responders than Non-responders and greater insulin-mediated suppression of plasma free fatty acids, branched-chain amino acids, and C3/C5 acylcarnitines in Non-responders than Responders, so that differences between groups at baseline were no longer present after weight loss. The effect of weight loss on total body fat mass, intra-abdominal adipose tissue volume, adipocyte size, and circulating inflammatory markers were not different between groups.CONCLUSIONThe results from our study demonstrate that the heterogeneity in the effects of marked weight loss on muscle and hepatic insulin sensitivity in people with obesity is determined by baseline insulin action, and reaches a ceiling when "normal" insulin action is achieved.TRIAL REGISTRATIONNCT00981500, NCT01299519, NCT02207777.FUNDINGNIH grants P30 DK056341, P30 DK020579, P30 DK052574, UL1 TR002345, and T32 HL13035, the American Diabetes Association (1-18-ICTS-119), the Longer Life Foundation (2019-011), and the Atkins Philanthropic Trust.


Asunto(s)
Resistencia a la Insulina , Humanos , Femenino , Resistencia a la Insulina/fisiología , Glucemia/metabolismo , Obesidad/metabolismo , Insulina/metabolismo , Pérdida de Peso/fisiología , Glucosa
7.
Nucleic Acids Res ; 51(9): 4178-4190, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070603

RESUMEN

The human gut microbiome has been linked to health and disease. Investigation of the human microbiome has largely employed 16S amplicon sequencing, with limited ability to distinguish microbes at the species level. Herein, we describe the development of Reference-based Exact Mapping (RExMap) of microbial amplicon variants that enables mapping of microbial species from standard 16S sequencing data. RExMap analysis of 16S data captures ∼75% of microbial species identified by whole-genome shotgun sequencing, despite hundreds-fold less sequencing depth. RExMap re-analysis of existing 16S data from 29,349 individuals across 16 regions from around the world reveals a detailed landscape of gut microbial species across populations and geography. Moreover, RExMap identifies a core set of fifteen gut microbes shared by humans. Core microbes are established soon after birth and closely associate with BMI across multiple independent studies. RExMap and the human microbiome dataset are presented as resources with which to explore the role of the human microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias/clasificación , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Metabolites ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36837791

RESUMEN

Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.

10.
Chest ; 163(1): 204-215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087794

RESUMEN

BACKGROUND: The prognosis and therapeutic responses are worse for pulmonary arterial hypertension associated with systemic sclerosis (SSc-PAH) compared with idiopathic pulmonary arterial hypertension (IPAH). This discrepancy could be driven by divergence in underlying metabolic determinants of disease. RESEARCH QUESTION: Are circulating bioactive metabolites differentially altered in SSc-PAH vs IPAH, and can this alteration explain clinical disparity between these PAH subgroups? STUDY DESIGN AND METHODS: Plasma biosamples from 400 patients with SSc-PAH and 1,082 patients with IPAH were included in the study. Another cohort of 100 patients with scleroderma with no PH and 44 patients with scleroderma with PH was included for external validation. More than 700 bioactive lipid metabolites, representing a range of vasoactive and immune-inflammatory pathways, were assayed in plasma samples from independent discovery and validation cohorts using liquid chromatography/high-resolution mass spectrometry-based approaches. Regression analyses were used to identify metabolites that exhibited differential levels between SSc-PAH and IPAH and associated with disease severity. RESULTS: From hundreds of circulating bioactive lipid molecules, five metabolites were found to distinguish between SSc-PAH and IPAH, as well as associate with markers of disease severity. Relative to IPAH, patients with SSc-PAH carried increased levels of fatty acid metabolites, including lignoceric acid and nervonic acid, as well as eicosanoids/oxylipins and sex hormone metabolites. INTERPRETATION: Patients with SSc-PAH are characterized by an unfavorable bioactive metabolic profile that may explain the poor and limited response to therapy. These data provide important metabolic insights into the molecular heterogeneity underlying differences between subgroups of PAH.


Asunto(s)
Hipertensión Pulmonar , Esclerodermia Sistémica , Humanos , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Pronóstico , Lípidos/uso terapéutico
11.
Sci Rep ; 12(1): 20218, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418854

RESUMEN

Chronic inflammation is a continuous low-grade activation of the systemic immune response. Whereas downstream inflammatory markers are associated with atrial fibrillation (AF), upstream inflammatory effectors including eicosanoids are less studied. To examine the association between eicosanoids and incident AF. We used a liquid chromatography-mass spectrometry for the non-targeted measurement of 161 eicosanoids and eicosanoid-related metabolites in the Framingham Heart Study. The association of each eicosanoid and incident AF was assessed using Cox proportional hazards models and adjusted for AF risk factors, including age, sex, height, weight, systolic/diastolic blood pressure, current smoking, antihypertensive medication, diabetes, history of myocardial infarction and heart failure. False discovery rate (FDR) was used to adjust for multiple testing. Eicosanoids with FDR < 0.05 were considered significant. In total, 2676 AF-free individuals (mean age 66 ± 9 years, 56% females) were followed for mean 10.8 ± 3.4 years; 351 participants developed incident AF. Six eicosanoids were associated with incident AF after adjusting for multiple testing (FDR < 0.05). A joint score was built from the top eicosanoids weighted by their effect sizes, which was associated with incident AF (HR = 2.72, CI = 1.71-4.31, P = 2.1 × 10-5). In conclusion, six eicosanoids were associated with incident AF after adjusting for clinical risk factors for AF.


Asunto(s)
Fibrilación Atrial , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Fibrilación Atrial/epidemiología , Fibrilación Atrial/etiología , Estudios Longitudinales , Modelos de Riesgos Proporcionales , Antihipertensivos/uso terapéutico , Eicosanoides
12.
Metabolites ; 12(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36295830

RESUMEN

Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects.

13.
Circ Res ; 131(4): e84-e99, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862024

RESUMEN

BACKGROUND: To clarify the mechanisms underlying physical activity (PA)-related cardioprotection, we examined the association of PA with plasma bioactive lipids (BALs) and cardiovascular disease (CVD) events. We additionally performed genome-wide associations. METHODS: PA-bioactive lipid associations were examined in VITAL (VITamin D and OmegA-3 TriaL)-clinical translational science center (REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01169259; N=1032) and validated in JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin)-NC (REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT00239681; N=589), using linear models adjusted for age, sex, race, low-density lipoprotein-cholesterol, total-C, and smoking. Significant BALs were carried over to examine associations with incident CVD in 2 nested CVD case-control studies: VITAL-CVD (741 case-control pairs) and JUPITER-CVD (415 case-control pairs; validation). RESULTS: We detected 145 PA-bioactive lipid validated associations (false discovery rate <0.1). Annotations were found for 6 of these BALs: 12,13-diHOME, 9,10-diHOME, lysoPC(15:0), oxymorphone-3b-D-glucuronide, cortisone, and oleoyl-glycerol. Genetic analysis within JUPITER-NC showed associations of 32 PA-related BALs with 22 single-nucleotide polymorphisms. From PA-related BALs, 12 are associated with CVD. CONCLUSIONS: We identified a PA-related bioactive lipidome profile out of which 12 BALs also had opposite associations with incident CVD events.


Asunto(s)
Enfermedades Cardiovasculares , Ejercicio Físico , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , LDL-Colesterol , Humanos , Factores de Riesgo , Rosuvastatina Cálcica
14.
Nat Commun ; 13(1): 4346, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896521

RESUMEN

Here we show that Triclosan (TCS), a high-volume antimicrobial additive that has been detected in human breastmilk, can be efficiently transferred by lactation to newborn mice, causing significant fatty liver (FL) during the suckling period. These findings are relevant since pediatric non-alcoholic fatty liver disease (NAFLD) is escalating in the United States, with a limited mechanistic understanding. Lactational delivery stimulated hepatosteatosis, triglyceride accumulation, endoplasmic reticulum (ER) stress, signs of inflammation, and liver fibrosis. De novo lipogenesis (DNL) induced by lactational TCS exposure is shown to be mediated in a PERK-eIF2α-ATF4-PPARα cascade. The administration of obeticholic acid (OCA), a potent FXR agonist, as well as activation of intestinal mucosal-regenerative gp130 signaling, led to reduced liver ATF4 expression, PPARα signaling, and DNL when neonates were exposed to TCS. It is yet to be investigated but mother to child transmission of TCS or similar toxicants may underlie the recent increases in pediatric NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Triclosán , Animales , Animales Recién Nacidos , Niño , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Lactancia , Lipogénesis/fisiología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , Triclosán/farmacología
15.
Metabolites ; 12(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35736452

RESUMEN

Emerging technologies now allow for mass spectrometry-based profiling of thousands of small molecule metabolites ('metabolomics') in an increasing number of biosamples. While offering great promise for insight into the pathogenesis of human disease, standard approaches have not yet been established for statistically analyzing increasingly complex, high-dimensional human metabolomics data in relation to clinical phenotypes, including disease outcomes. To determine optimal approaches for analysis, we formally compare traditional and newer statistical learning methods across a range of metabolomics dataset types. In simulated and experimental metabolomics data derived from large population-based human cohorts, we observe that with an increasing number of study subjects, univariate compared to multivariate methods result in an apparently higher false discovery rate as represented by substantial correlation between metabolites directly associated with the outcome and metabolites not associated with the outcome. Although the higher frequency of such associations would not be considered false in the strict statistical sense, it may be considered biologically less informative. In scenarios wherein the number of assayed metabolites increases, as in measures of nontargeted versus targeted metabolomics, multivariate methods performed especially favorably across a range of statistical operating characteristics. In nontargeted metabolomics datasets that included thousands of metabolite measures, sparse multivariate models demonstrated greater selectivity and lower potential for spurious relationships. When the number of metabolites was similar to or exceeded the number of study subjects, as is common with nontargeted metabolomics analysis of relatively small cohorts, sparse multivariate models exhibited the most-robust statistical power with more consistent results. These findings have important implications for metabolomics analysis in human disease.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35361620

RESUMEN

INTRODUCTION: Peptide markers of inflammation have been associated with the development of type 2 diabetes. The role of upstream, lipid-derived mediators of inflammation such as eicosanoids, remains less clear. The aim of this study was to examine whether eicosanoids are associated with incident type 2 diabetes. RESEARCH DESIGN & METHODS: In the FINRISK (Finnish Cardiovascular Risk Study) 2002 study, a population-based sample of Finnish men and women aged 25-74 years, we used directed, non-targeted liquid chromatography-mass spectrometry to identify 545 eicosanoids and related oxylipins in the participants' plasma samples (n=8292). We used multivariable-adjusted Cox regression to examine associations between eicosanoids and incident type 2 diabetes. The significant independent findings were replicated in the Framingham Heart Study (FHS, n=2886) and DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) 2007 (n=3905). Together, these three cohorts had 1070 cases of incident type 2 diabetes. RESULTS: In the FINRISK 2002 cohort, 76 eicosanoids were associated individually with incident type 2 diabetes. We identified three eicosanoids independently associated with incident type 2 diabetes using stepwise Cox regression with forward selection and a Bonferroni-corrected inclusion threshold. A three-eicosanoid risk score produced an HR of 1.56 (95% CI 1.41 to 1.72) per 1 SD increment for risk of incident diabetes. The HR for comparing the top quartile with the lowest was 2.80 (95% CI 2.53 to 3.07). In the replication analyses, the three-eicosanoid risk score was significant in FHS (HR 1.24 (95% CI 1.10 to 1.39, p<0.001)) and directionally consistent in DILGOM (HR 1.12 (95% CI 0.99 to 1.27, p=0.07)). Meta-analysis of the three cohorts yielded a pooled HR of 1.31 (95% CI 1.05 to 1.56). CONCLUSIONS: Plasma eicosanoid profiles predict incident type 2 diabetes and the clearest signals replicate in three independent cohorts. Our findings give new information on the biology underlying type 2 diabetes and suggest opportunities for early identification of people at risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Adulto , Anciano , Diabetes Mellitus Tipo 2/complicaciones , Eicosanoides , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
17.
Genome Biol ; 22(1): 198, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229738

RESUMEN

BACKGROUND: Recent studies highlight the role of metabolites in immune diseases, but it remains unknown how much of this effect is driven by genetic and non-genetic host factors. RESULT: We systematically investigate circulating metabolites in a cohort of 500 healthy subjects (500FG) in whom immune function and activity are deeply measured and whose genetics are profiled. Our data reveal that several major metabolic pathways, including the alanine/glutamate pathway and the arachidonic acid pathway, have a strong impact on cytokine production in response to ex vivo stimulation. We also examine the genetic regulation of metabolites associated with immune phenotypes through genome-wide association analysis and identify 29 significant loci, including eight novel independent loci. Of these, one locus (rs174584-FADS2) associated with arachidonic acid metabolism is causally associated with Crohn's disease, suggesting it is a potential therapeutic target. CONCLUSION: This study provides a comprehensive map of the integration between the blood metabolome and immune phenotypes, reveals novel genetic factors that regulate blood metabolite concentrations, and proposes an integrative approach for identifying new disease treatment targets.


Asunto(s)
Inmunidad Innata/genética , Redes y Vías Metabólicas/genética , Fenotipo , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Alanina/sangre , Alanina/inmunología , Ácido Araquidónico/sangre , Ácido Araquidónico/inmunología , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Genómica/métodos , Ácido Glutámico/sangre , Ácido Glutámico/inmunología , Voluntarios Sanos , Humanos , Masculino , Redes y Vías Metabólicas/inmunología , Metabolómica/métodos , Persona de Mediana Edad
18.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34262972

RESUMEN

Each type of vaping device (vape pen, box Mod and JUUL), as well as nicotine and flavourings, induces a disparate metabolite profile or signature, such that each device and liquid is likely to lead to its own set of health effects https://bit.ly/3eExKzi.

19.
J Mass Spectrom ; 56(8): e4772, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34240506

RESUMEN

Advances in high-resolution, nontargeted mass spectrometry allow for the simultaneous measure of thousands of metabolites in a single biosample. Application of these analytical approaches to population-scale human studies has been limited by the need for resource-intensive blood sample collection, preparation, and storage. Dried blood spotting, a technique developed decades ago for newborn screening, may offer a simple approach to overcome barriers in human blood acquisition and storage. In this study, we find that over 4,400 spectral features across diverse chemical classes may be efficiently and reproducibly extracted and relatively quantified from human dried blood spots using nontargeted metabolomic analysis employing HILIC and reversed-phase liquid chromatography coupled to Orbitrap mass spectrometry. Moreover, over 80% of metabolites were found to be chemically stable in dried blood spots stored at room temperature for up to a week. In direct relation to plasma samples, dried blood spots exhibited comparable representation of the human circulating metabolome, capturing both known and previously uncharacterized metabolites. Dried blood spot approaches provide an opportunity for rapid and facile human biosampling and storage and will enable widespread metabolomics study of populations, particularly in resource-limited areas.

20.
Nat Commun ; 12(1): 2671, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976176

RESUMEN

The collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.


Asunto(s)
Causas de Muerte/tendencias , Enterobacteriaceae/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Adolescente , Adulto , Anciano , Estudios de Cohortes , Estudios Transversales , Enterobacteriaceae/clasificación , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Vigilancia de la Población/métodos , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...