Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 86(2): 120-130, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31097295

RESUMEN

BACKGROUND: The 5'-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive. METHODS: Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation. Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the climbing assay. RESULTS: Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in Drosophila was associated with drastic climbing impairment. CONCLUSIONS: We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2, describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells and its association with Drosophila melanogaster motility behavior.


Asunto(s)
5'-Nucleotidasa/genética , Proteínas Quinasas Activadas por AMP/genética , Trastornos Mentales/genética , Células-Madre Neurales/metabolismo , Biosíntesis de Proteínas/genética , Transducción de Señal/genética , Adulto , Animales , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Humanos , Actividad Motora/genética , Trastornos del Movimiento/genética , Trastornos del Movimiento/psicología , Fosforilación , Interferencia de ARN
2.
Neuropharmacology ; 143: 153-162, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30268521

RESUMEN

Estrogens have been shown to rapidly regulate local signalling at synapses and within the nucleus. The result of these signalling events is to rapidly modulate synapse structure and function, as well as epigenetic mechanisms including histone modifications. Ultimately these mechanisms are thought to contribute to long-lasting changes in neural circuitry, and thus influence cognitive functions such as learning and memory. However, the mechanisms by which estrogen-mediated local synaptic and nuclear signalling events are coordinated are not well understood. In this study we have found that the scaffold protein afadin, (also known as AF-6), undergoes a bi-directional trafficking to both synaptic and nuclear compartment in response to acute 17ß-estradiol (estradiol) treatment, in mixed sex neuronal cultures derived from fetal cortex. Interestingly, nuclear accumulation of afadin was coincidental with an increase in the phosphorylation of histone H3 at serine 10 (H3S10p). This epigenetic modification is associated with the remodeling of chromatin into an open euchromatin state, allowing for transcriptional activation and related learning and memory processes. Critically, the cyto-nuclear trafficking of afadin was required for estradiol-dependent H3S10p. We further determined that nuclear accumulation of afadin is sufficient to induce phosphorylation of the mitogentic kinases ERK1/2 (pERK1/2) within the nucleus. Moreover, nuclear pERK1/2 was required for estradiol-dependent H3S10p. Taken together, we propose a model whereby estradiol induces the bi-directional trafficking of afadin to synaptic and nuclear sub-compartments. Within the nucleus, afadin is required for increased pERK1/2 which in turn is required for H3S10p. Therefore this represents a mechanism through which estrogens may be able to coordinate both synaptic and nucleosomal events within the same neuronal population.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Estradiol/metabolismo , Histonas/metabolismo , Proteínas de Microfilamentos/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Núcleo Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/fisiología , Citoplasma/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Estradiol/farmacología , Estrógenos/metabolismo , Estrógenos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Masculino , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley
3.
Alzheimers Dement ; 14(3): 306-317, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29055813

RESUMEN

INTRODUCTION: Synapse loss is the structural correlate of the cognitive decline indicative of dementia. In the brains of Alzheimer's disease sufferers, amyloid ß (Aß) peptides aggregate to form senile plaques but as soluble peptides are toxic to synapses. We previously demonstrated that Aß induces Dickkopf-1 (Dkk1), which in turn activates the Wnt-planar cell polarity (Wnt-PCP) pathway to drive tau pathology and neuronal death. METHODS: We compared the effects of Aß and of Dkk1 on synapse morphology and memory impairment while inhibiting or silencing key elements of the Wnt-PCP pathway. RESULTS: We demonstrate that Aß synaptotoxicity is also Dkk1 and Wnt-PCP dependent, mediated by the arm of Wnt-PCP regulating actin cytoskeletal dynamics via Daam1, RhoA and ROCK, and can be blocked by the drug fasudil. DISCUSSION: Our data add to the importance of aberrant Wnt signaling in Alzheimer's disease neuropathology and indicate that fasudil could be repurposed as a treatment for the disease.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Péptidos beta-Amiloides/metabolismo , Fármacos Neuroprotectores/farmacología , Nootrópicos/farmacología , Sinapsis/metabolismo , Vía de Señalización Wnt , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacocinética , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Relación Dosis-Respuesta a Droga , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Fármacos Neuroprotectores/farmacocinética , Nootrópicos/farmacocinética , Cultivo Primario de Células , ARN Mensajero/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/patología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología
4.
Front Cell Neurosci ; 9: 137, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926772

RESUMEN

In the mammalian forebrain, the majority of excitatory synapses occur on dendritic spines. Changes in the number of these structures is important for brain development, plasticity and the refinement of neuronal circuits. The formation of excitatory synapses involves the coordinated formation of dendritic spines and targeting of multi-protein complexes to nascent connections. Recent studies have demonstrated that the estrogen 17ß-estradiol (E2) can rapidly increase the number of dendritic spines, an effect consistent with the ability of E2 to rapidly influence cognitive function. However, the molecular composition of E2-induced spines and whether these protrusions form synaptic connections has not been fully elucidated. Moreover, which estrogen receptor(s) (ER) mediate these spine-morphogenic responses are not clear. Here, we report that acute E2 treatment results in the recruitment of postsynaptic density protein 95 (PSD-95) to novel dendritic spines. In addition neuroligin 1 (Nlg-1) and the NMDA receptor subunit GluN1 are recruited to nascent synapses in cortical neurons. The presence of these synaptic proteins at nascent synapses suggests that the machinery to allow pre- and post-synapses to form connections are present in E2-induced spines. We further demonstrate that E2 treatment results in the rapid and transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the mammalian target of rapamycin (mTOR) signaling pathways. However, only ERK1/2 and Akt are required for E2-mediated spinogenesis. Using synthetic receptor modulators, we further demonstrate that activation of the estrogen receptor beta (ERß) but not alpha (ERα) mimics rapid E2-induced spinogenesis and synaptogenesis. Taken together these findings suggest that in primary cortical neurons, E2 signaling via ERß, but not through ERα, is capable of remodeling neuronal circuits by increasing the number of excitatory synapses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...