Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 36(12): 2780-2794, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34403156

RESUMEN

BACKGROUND: X-linked dystonia parkinsonism is a generalized, progressive dystonia followed by parkinsonism with onset in adulthood and accompanied by striatal neurodegeneration. Causative mutations are located in a noncoding region of the TATA-box binding protein-associated factor 1 (TAF1) gene and result in aberrant splicing. There are 2 major TAF1 isoforms that may be decreased in symptomatic patients, including the ubiquitously expressed canonical cTAF1 and the neuronal-specific nTAF1. OBJECTIVE: The objective of this study was to determine the behavioral and transcriptomic effects of decreased cTAF1 and/or nTAF1 in vivo. METHODS: We generated adeno-associated viral (AAV) vectors encoding microRNAs targeting Taf1 in a splice-isoform selective manner. We performed intracerebroventricular viral injections in newborn mice and rats and intrastriatal infusions in 3-week-old rats. The effects of Taf1 knockdown were assayed at 4 months of age with evaluation of motor function, histology, and RNA sequencing of the striatum, followed by its validation. RESULTS: We report motor deficits in all cohorts, more pronounced in animals injected at P0, in which we also identified transcriptomic alterations in multiple neuronal pathways, including the cholinergic synapse. In both species, we show a reduced number of striatal cholinergic interneurons and their marker mRNAs after Taf1 knockdown in the newborn. CONCLUSION: This study provides novel information regarding the requirement for TAF1 in the postnatal maintenance of striatal cholinergic neurons, the dysfunction of which is involved in other inherited forms of dystonia. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Histona Acetiltransferasas/genética , Trastornos Parkinsonianos , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Adulto , Animales , Colinérgicos , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Humanos , Ratones , Isoformas de Proteínas , Ratas
2.
Brain Res ; 1706: 24-31, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366018

RESUMEN

DYT1 dystonia is a neurological disease caused by a dominant mutation that results in the loss of a glutamic acid in the endoplasmic reticulum-resident protein torsinA. Currently, treatments are symptomatic and only provide partial relief. Multiple reports support the hypothesis that selectively reducing expression of mutant torsinA without affecting levels of the wild type protein should be beneficial. Published cell-based studies support this hypothesis. It is unclear, however, if phenotypes are reversible by targeting the molecular defect once established in vivo. Here, we generated adeno-associated virus encoding artificial microRNA targeting human mutant torsinA and delivered them to the striatum of symptomatic transgenic rats that express the full human TOR1A mutant gene. We achieved efficient suppression of human mutant torsinA expression in DYT1 transgenic rats, partly reversing its accumulation in the nuclear envelope. This intervention rescued PERK-eIF2α pathway dysregulation in striatal projection neurons but not behavioral abnormalities. Moreover, we found abnormal expression of components of dopaminergic neurotransmission in DYT1 rat striatum, which were not normalized by suppressing mutant torsinA expression. Our findings demonstrate the reversibility of translational dysregulation in DYT1 neurons and confirm the presence of abnormal dopaminergic neurotransmission in DYT1 dystonia.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Chaperonas Moleculares/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Cuerpo Estriado/metabolismo , Distonía/genética , Distonía/terapia , Distonía Muscular Deformante/genética , Distonía Muscular Deformante/metabolismo , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/fisiología , Femenino , Humanos , Interneuronas/metabolismo , Masculino , Chaperonas Moleculares/genética , Mutación , Neuronas/metabolismo , Interferencia de ARN/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Transducción de Señal/genética , eIF-2 Quinasa/fisiología
3.
Neuroscience ; 371: 455-468, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29289717

RESUMEN

DYT1 dystonia is a neurological disease caused by dominant mutations in the TOR1A gene, encoding for the endoplasmic reticulum (ER)-resident protein torsinA. Recent reports linked expression of the DYT1-causing protein with dysregulation of eIF2α, a key component of the cellular response to ER stress known as the unfolded protein response (UPR). However, the response of the DYT1 mammalian brain to acute ER stress inducers has not been evaluated in vivo. We hypothesized that torsinA regulates the neuronal UPR and expression of its mutant form would alter this process. TorsinA was post-transcriptionally upregulated upon acute ER stress in different models, suggesting a role in this response. Moreover, increased basal phosphorylation of eIF2α in DYT1 transgenic rats was associated with an abnormal response to acute ER stress. Finally, an unbiased RNA-Seq-based transcriptomic analysis of embryonic brain tissue in heterozygous and homozygous DYT1 knockin mice confirmed the presence of eIF2α dysregulation in the DYT1 brain. In sum, these findings support previous reports linking torsinA function, eIF2α signaling and the neuronal response to ER stress in vivo. Furthermore, we describe novel protocols to investigate neuronal ER stress in cultured neurons and in vivo.


Asunto(s)
Encéfalo/metabolismo , Distonía Muscular Deformante/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/patología , Fármacos del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Transgénicos , Ratas Sprague-Dawley , Ratas Transgénicas , Transcriptoma , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología , Regulación hacia Arriba
4.
J Neurosci ; 36(40): 10245-10256, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27707963

RESUMEN

Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT: Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.


Asunto(s)
Distonía/genética , Distonía/fisiopatología , Retículo Endoplásmico/genética , Chaperonas Moleculares/genética , Animales , Conducta Animal , Señalización del Calcio/genética , Cerebelo/fisiopatología , Distonía/psicología , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Genotipo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Ratones , Ratones Noqueados , Neuronas/fisiología , Transducción de Señal/genética
5.
Proc Natl Acad Sci U S A ; 111(46): 16401-6, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368147

RESUMEN

Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Células Madre/citología , Papilas Gustativas/metabolismo , Animales , Biomarcadores , Separación Celular , Células Cultivadas , Ácido Cítrico/farmacología , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Organoides , Compuestos de Amonio Cuaternario/farmacología , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/biosíntesis , Cloruro de Sodio/farmacología , Glutamato de Sodio/farmacología , Sacarosa/análogos & derivados , Sacarosa/farmacología , Tamoxifeno/farmacología , Gusto/fisiología , Papilas Gustativas/citología , Tiazinas/farmacología , Lengua/citología
6.
PLoS One ; 9(9): e109099, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268642

RESUMEN

In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.


Asunto(s)
Contusiones/fisiopatología , Hiperalgesia/fisiopatología , Neuralgia/fisiopatología , Asta Dorsal de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores/metabolismo , Proliferación Celular , Contusiones/complicaciones , Contusiones/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Expresión Génica , Proteína Ácida Fibrilar de la Glía , Hiperalgesia/complicaciones , Hiperalgesia/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/complicaciones , Neuralgia/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Asta Dorsal de la Médula Espinal/lesiones , Asta Dorsal de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA