Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722697

RESUMEN

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske Iron-Sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, they underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA-seq revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.

2.
Am J Respir Cell Mol Biol ; 63(5): 652-664, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32692928

RESUMEN

Pulmonary hypertension (PH) and right ventricular (RV) hypertrophy frequently develop in patients with hypoxic lung disease. Chronic alveolar hypoxia (CH) promotes sustained pulmonary vasoconstriction and pulmonary artery (PA) remodeling by acting on lung cells, resulting in the development of PH. RV hypertrophy develops in response to PH, but coronary arterial hypoxemia in CH may influence that response by activating HIF-1α (hypoxia-inducible factor 1α) and/or HIF-2α in cardiomyocytes. Indeed, other studies show that the attenuation of PH in CH fails to prevent RV remodeling, suggesting that PH-independent factors regulate RV hypertrophy. Therefore, we examined the role of HIFs in RV remodeling in CH-induced PH. We deleted HIF-1α and/or HIF-2α in hearts of adult mice that were then housed under normoxia or CH (10% O2) for 4 weeks. RNA-sequencing analysis of the RV revealed that HIF-1α and HIF-2α regulate the transcription of largely distinct gene sets during CH. RV systolic pressure increased, and RV hypertrophy developed in CH. The deletion of HIF-1α in smooth muscle attenuated the CH-induced increases in RV systolic pressure but did not decrease hypertrophy. The deletion of HIF-1α in cardiomyocytes amplified RV remodeling; this was abrogated by the simultaneous loss of HIF-2α. CH decreased stroke volume and cardiac output in wild-type but not in HIF-1α-deficient hearts, suggesting that CH may cause cardiac dysfunction via HIF-dependent signaling. Collectively, these data reveal that HIF-1 and HIF-2 act together in RV cardiomyocytes to orchestrate RV remodeling in CH, with HIF-1 playing a protective role rather than driving hypertrophy.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/complicaciones , Función Ventricular Derecha/fisiología , Remodelación Ventricular/fisiología , Animales , Enfermedad Crónica , Eliminación de Gen , Regulación de la Expresión Génica , Ontología de Genes , Hipertensión Pulmonar/genética , Integrasas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Transcripción Genética , Función Ventricular Derecha/genética , Remodelación Ventricular/genética
4.
J Biol Chem ; 293(1): 271-284, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29118187

RESUMEN

The hypoxic response is a stress response triggered by low oxygen tension. Hypoxia-inducible factors (HIFs) play a prominent role in the pathobiology of hypoxia-associated conditions, including pulmonary hypertension (PH) and polycythemia. The c-Jun N-terminal protein kinase (JNK), a stress-activated protein kinase that consists of two ubiquitously expressed isoforms, JNK1 and JNK2, and a tissue-specific isoform, JNK3, has been shown to be activated by hypoxia. However, the physiological role of JNK1 and JNK2 in the hypoxic response remains elusive. Here, using genetic knockout cells and/or mice, we show that JNK2, but not JNK1, up-regulates the expression of HIF-1α and HIF-2α and contributes to hypoxia-induced PH and polycythemia. Knockout or silencing of JNK2, but not JNK1, prevented the accumulation of HIF-1α in hypoxia-treated cells. Loss of JNK2 resulted in a decrease in HIF-1α and HIF-2α mRNA levels under resting conditions and in response to hypoxia. Consequently, hypoxia-treated Jnk2-/- mice had reduced erythropoiesis and were less prone to polycythemia because of decreased expression of the HIF target gene erythropoietin (Epo). Jnk2-/- mice were also protected from hypoxia-induced PH, as indicated by lower right ventricular systolic pressure, a process that depends on HIF. Taken together, our results suggest that JNK2 is a positive regulator of HIFs and therefore may contribute to HIF-dependent pathologies.


Asunto(s)
Hipoxia de la Célula/fisiología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Eritropoyesis/fisiología , Eritropoyetina/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Proteína Quinasa 9 Activada por Mitógenos/fisiología , Policitemia/metabolismo , ARN Mensajero/genética , Activación Transcripcional , Regulación hacia Arriba
5.
PLoS One ; 12(8): e0180957, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28792962

RESUMEN

Bronchopulmonary dysplasia (BPD), a common complication of preterm birth, is associated with pulmonary hypertension (PH) in 25% of infants with moderate to severe BPD. Neonatal mice exposed to hyperoxia for 14d develop lung disease similar to BPD, with evidence of associated PH. The cyclic guanosine monophosphate (cGMP) signaling pathway has not been well studied in BPD-associated PH. In addition, there is little data about the natural history of hyperoxia-induced PH in mice or the utility of phosphodiesterase-5 (PDE5) inhibition in established disease. C57BL/6 mice were placed in room air or 75% O2 within 24h of birth for 14d, followed by recovery in room air for an additional 7 days (21d). Additional pups were treated with either vehicle or sildenafil for 7d during room air recovery. Mean alveolar area, pulmonary artery (PA) medial wall thickness (MWT), RVH, and vessel density were evaluated at 21d. PA protein from 21d animals was analyzed for soluble guanylate cyclase (sGC) activity, PDE5 activity, and cGMP levels. Neonatal hyperoxia exposure results in persistent alveolar simplification, RVH, decreased vessel density, increased MWT, and disrupted cGMP signaling despite a period of room air recovery. Delayed treatment with sildenafil during room air recovery is associated with improved RVH and decreased PA PDE5 activity, but does not have significant effects on alveolar simplification, PA remodeling, or vessel density. These data are consistent with clinical studies suggesting inconsistent effects of sildenafil treatment in infants with BPD-associated PH.


Asunto(s)
Displasia Broncopulmonar/patología , Hiperoxia/patología , Hipertensión Pulmonar/patología , Oxígeno/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Animales , Animales Recién Nacidos , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Guanilato Ciclasa/metabolismo , Hipertrofia Ventricular Derecha/patología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/fisiología , Arteria Pulmonar/fisiología , Transducción de Señal , Remodelación Vascular
6.
Redox Biol ; 13: 228-234, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28595160

RESUMEN

Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(P)H oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.


Asunto(s)
Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Humanos , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Proteínas Quinasas/metabolismo
7.
Mol Aspects Med ; 47-48: 76-89, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26776678

RESUMEN

Mitochondria are responsible for the majority of oxygen consumption in cells, and thus represent a conceptually appealing site for cellular oxygen sensing. Over the past 40 years, a number of mechanisms to explain how mitochondria participate in oxygen sensing have been proposed. However, no consensus has been reached regarding how mitochondria could regulate transcriptional and post-translational responses to hypoxia. Nevertheless, a growing body of data continues to implicate a role for increased reactive oxygen species (ROS) signals from the electron transport chain (ETC) in triggering responses to hypoxia in diverse cell types. The present article reviews our progress in understanding this field and considers recent advances that provide new insight, helping to lift the fog from this complex topic.


Asunto(s)
Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Hipoxia/metabolismo , Modelos Biológicos , Oxidación-Reducción , Transducción de Señal
8.
Am J Respir Crit Care Med ; 189(3): 314-24, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24251580

RESUMEN

RATIONALE: Chronic hypoxia induces pulmonary vascular remodeling, pulmonary hypertension, and right ventricular hypertrophy. At present, little is known about mechanisms driving these responses. Hypoxia-inducible factor-1α (HIF-1α) is a master regulator of transcription in hypoxic cells, up-regulating genes involved in energy metabolism, proliferation, and extracellular matrix reorganization. Systemic loss of a single HIF-1α allele has been shown to attenuate hypoxic pulmonary hypertension, but the cells contributing to this response have not been identified. OBJECTIVES: We sought to determine the contribution of HIF-1α in smooth muscle on pulmonary vascular and right heart responses to chronic hypoxia. METHODS: We used mice with homozygous conditional deletion of HIF-1α combined with tamoxifen-inducible smooth muscle-specific Cre recombinase expression. Mice received either tamoxifen or vehicle followed by exposure to either normoxia or chronic hypoxia (10% O2) for 30 days before measurement of cardiopulmonary responses. MEASUREMENTS AND MAIN RESULTS: Tamoxifen-induced smooth muscle-specific deletion of HIF-1α attenuated pulmonary vascular remodeling and pulmonary hypertension in chronic hypoxia. However, right ventricular hypertrophy was unchanged despite attenuated pulmonary pressures. CONCLUSIONS: These results indicate that HIF-1α in smooth muscle contributes to pulmonary vascular remodeling and pulmonary hypertension in chronic hypoxia. However, loss of HIF-1 function in smooth muscle does not affect hypoxic cardiac remodeling, suggesting that the cardiac hypertrophy response is not directly coupled to the increase in pulmonary artery pressure.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/complicaciones , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Enfermedad Crónica , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Hipoxia/metabolismo , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Arteria Pulmonar/patología , Distribución Aleatoria
9.
J Vis Exp ; (80): e50889, 2013 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-24193306

RESUMEN

Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 µM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.


Asunto(s)
Músculo Liso Vascular/citología , Arteria Pulmonar/citología , Animales , Animales Recién Nacidos , Bovinos , Medios de Cultivo , Técnicas Citológicas/métodos , Desmina/análisis , Ratones , Contracción Muscular , Relajación Muscular , Músculo Liso Vascular/química , Miosinas/análisis , Arteria Pulmonar/química
10.
Am J Respir Cell Mol Biol ; 49(6): 885-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24047466

RESUMEN

Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy. In PASMCs from Sirt3 knockout (Sirt3(-/-)) mice in the C57BL/6 background, we observed that acute hypoxia (1.5% O2; 30 min)-induced changes in ROS signaling, detected using targeted redox-sensitive, ratiometric fluorescent protein sensors (roGFP) in the mitochondrial matrix, intermembrane space, and the cytosol, were indistinguishable from Sirt3(+/+) cells. Acute hypoxia-induced cytosolic calcium signaling in Sirt3(-/-) PASMCs was also indistinguishable from Sirt3(+/+) cells. During sustained hypoxia (1.5% O2; 16 h), Sirt3 deletion augmented mitochondrial matrix oxidant stress, but this did not correspond to an augmentation of intermembrane space or cytosolic oxidant signaling. Sirt3 deletion did not affect HIF-1α stabilization under normoxia, nor did it augment HIF-1α stabilization during sustained hypoxia (1.5% O2; 4 h). Sirt3(-/-) mice housed in chronic hypoxia (10% O2; 30 d) developed PH, PA wall remodeling, and right ventricular hypertrophy that was indistinguishable from Sirt3(+/+) littermates. Thus, Sirt3 deletion does not augment hypoxia-induced ROS signaling or its consequences in the cytosol of PASMCs, or the development of PH. These findings suggest that Sirt3 responses may be cell type specific, or restricted to certain genetic backgrounds.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Sirtuina 3/deficiencia , Animales , Señalización del Calcio , Femenino , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/fisiología , Vasoconstricción/fisiología
11.
Biochem J ; 456(3): 337-46, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24044889

RESUMEN

The ability to adapt to acute and chronic hypoxia is critical for cellular survival. Two established functional responses to hypoxia include the regulation of gene transcription by HIF (hypoxia-inducible factor), and the constriction of pulmonary arteries in response to alveolar hypoxia. The mechanism of O2 sensing in these responses is not established, but some studies implicate hypoxia-induced mitochondrial ROS (reactive oxygen species) signalling. To further test this hypothesis, we expressed PRDX5 (peroxiredoxin-5), a H2O2 scavenger, in the IMS (mitochondrial intermembrane space), reasoning that the scavenging of ROS in that compartment should abrogate cellular responses triggered by the release of mitochondrial oxidants to the cytosol. Using adenoviral expression of IMS-PRDX5 (IMS-targeted PRDX5) in PASMCs (pulmonary artery smooth muscle cells) we show that IMS-PRDX5 inhibits hypoxia-induced oxidant signalling in the IMS and cytosol. It also inhibits HIF-1α stabilization and HIF activity in a dose-dependent manner without disrupting cellular oxygen consumption. IMS-PRDX5 expression also attenuates the increase in cytosolic [Ca(2+)] in PASMCs during hypoxia. These results extend previous work by demonstrating the importance of IMS-derived ROS signalling in both the HIF and lung vascular responses to hypoxia.


Asunto(s)
Membranas Mitocondriales/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Peroxirredoxinas/biosíntesis , Arteria Pulmonar/enzimología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Hipoxia de la Célula , Regulación Enzimológica de la Expresión Génica/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Peroxirredoxinas/genética , Arteria Pulmonar/patología , Ratas
12.
Am J Respir Crit Care Med ; 187(4): 424-32, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23328522

RESUMEN

RATIONALE: The role of reactive oxygen species (ROS) signaling in the O(2) sensing mechanism underlying acute hypoxic pulmonary vasoconstriction (HPV) has been controversial. Although mitochondria are important sources of ROS, studies using chemical inhibitors have yielded conflicting results, whereas cellular models using genetic suppression have precluded in vivo confirmation. Hence, genetic animal models are required to test mechanistic hypotheses. OBJECTIVES: We tested whether mitochondrial Complex III is required for the ROS signaling and vasoconstriction responses to acute hypoxia in pulmonary arteries (PA). METHODS: A mouse permitting Cre-mediated conditional deletion of the Rieske iron-sulfur protein (RISP) of Complex III was generated. Adenoviral Cre recombinase was used to delete RISP from isolated PA vessels or smooth muscle cells (PASMC). MEASUREMENTS AND MAIN RESULTS: In PASMC, RISP depletion abolished hypoxia-induced increases in ROS signaling in the mitochondrial intermembrane space and cytosol, and it abrogated hypoxia-induced increases in [Ca(2+)](i). In isolated PA vessels, RISP depletion abolished hypoxia-induced ROS signaling in the cytosol. Breeding the RISP mice with transgenic mice expressing tamoxifen-activated Cre in smooth muscle permitted the depletion of RISP in PASMC in vivo. Precision-cut lung slices from those mice revealed that RISP depletion abolished hypoxia-induced increases in [Ca(2+)](i) of the PA. In vivo RISP depletion in smooth muscle attenuated the acute hypoxia-induced increase in right ventricular systolic pressure in anesthetized mice. CONCLUSIONS: Acute hypoxia induces superoxide release from Complex III of smooth muscle cells. These oxidant signals diffuse into the cytosol and trigger increases in [Ca(2+)](i) that cause acute hypoxic pulmonary vasoconstriction.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Circulación Pulmonar , Superóxidos/metabolismo , Animales , Citosol/metabolismo , Modelos Animales de Enfermedad , Complejo III de Transporte de Electrones/genética , Hipoxia/genética , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Mol Cell Biol ; 31(17): 3531-45, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21670147

RESUMEN

AMP-activated protein kinase (AMPK) is an energy sensor activated by increases in [AMP] or by oxidant stress (reactive oxygen species [ROS]). Hypoxia increases cellular ROS signaling, but the pathways underlying subsequent AMPK activation are not known. We tested the hypothesis that hypoxia activates AMPK by ROS-mediated opening of calcium release-activated calcium (CRAC) channels. Hypoxia (1.5% O(2)) augments cellular ROS as detected by the redox-sensitive green fluorescent protein (roGFP) but does not increase the [AMP]/[ATP] ratio. Increases in intracellular calcium during hypoxia were detected with Fura2 and the calcium-calmodulin fluorescence resonance energy transfer (FRET) sensor YC2.3. Antioxidant treatment or removal of extracellular calcium abrogates hypoxia-induced calcium signaling and subsequent AMPK phosphorylation during hypoxia. Oxidant stress triggers relocation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+) sensor, to the plasma membrane. Knockdown of STIM1 by short interfering RNA (siRNA) attenuates the calcium responses to hypoxia and subsequent AMPK phosphorylation, while inhibition of L-type calcium channels has no effect. Knockdown of the AMPK upstream kinase LKB1 by siRNA does not prevent AMPK activation during hypoxia, but knockdown of CaMKKß abolishes the AMPK response. These findings reveal that hypoxia can trigger AMPK activation in the apparent absence of increased [AMP] through ROS-dependent CRAC channel activation, leading to increases in cytosolic calcium that activate the AMPK upstream kinase CaMKKß.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Canales de Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Adenosina Monofosfato/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Señalización del Calcio/fisiología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Hipoxia de la Célula , Línea Celular Tumoral , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Activación Enzimática/fisiología , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Hipoxia , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Interferencia de ARN , Ratas , Molécula de Interacción Estromal 1 , Tapsigargina/farmacología
14.
Biochim Biophys Acta ; 1813(7): 1382-94, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21185334

RESUMEN

To clarify the relationship between reactive oxygen species (ROS) and cell death during ischemia-reperfusion (I/R), we studied cell death mechanisms in a cellular model of I/R. Oxidant stress during simulated ischemia was detected in the mitochondrial matrix using mito-roGFP, a ratiometric redox sensor, and by Mito-Sox Red oxidation. Reperfusion-induced death was attenuated by over-expression of Mn-superoxide dismutase (Mn-SOD) or mitochondrial phospholipid hydroperoxide glutathione peroxidase (mito-PHGPx), but not by catalase, mitochondria-targeted catalase, or Cu,Zn-SOD. Protection was also conferred by chemically distinct antioxidant compounds, and mito-roGFP oxidation was attenuated by NAC, or by scavenging of residual O(2) during the ischemia (anoxic ischemia). Mitochondrial permeability transition pore (mPTP) oscillation/opening was monitored by real-time imaging of mitochondrial calcein fluorescence. Oxidant stress caused release of calcein to the cytosol during ischemia, a response that was inhibited by chemically diverse antioxidants, anoxia, or over-expression of Mn-SOD or mito-PHGPx. These findings suggest that mitochondrial oxidant stress causes oscillation of the mPTP prior to reperfusion. Cytochrome c release from mitochondria to the cytosol was not detected until after reperfusion, and was inhibited by anoxic ischemia or antioxidant administration during ischemia. Although DNA fragmentation was detected after I/R, no evidence of Bax activation was detected. Over-expression of the anti-apoptotic protein Bcl-X(L) in cardiomyocytes did not confer protection against I/R-induced cell death. Moreover, murine embryonic fibroblasts with genetic depletion of Bax and Bak, or over-expression of Bcl-X(L), failed to show protection against I/R. These findings indicate that mitochondrial ROS during ischemia triggers mPTP activation, mitochondrial depolarization, and cell death during reperfusion through a Bax/Bak-independent cell death pathway. Therefore, mitochondrial apoptosis appears to represent a redundant death pathway in this model of simulated I/R. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis , Hipoxia de la Célula , Células Cultivadas , Embrión de Pollo , Citocromos c/metabolismo , Fluoresceínas , Técnicas de Inactivación de Genes , Potencial de la Membrana Mitocondrial , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/patología , Estrés Oxidativo , Propidio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
15.
Respir Physiol Neurobiol ; 174(3): 201-11, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20713189

RESUMEN

Pulmonary arteries (PA) constrict in response to alveolar hypoxia, whereas systemic arteries (SA) undergo dilation. These physiological responses reflect the need to improve gas exchange in the lung, and to enhance the delivery of blood to hypoxic systemic tissues. An important unresolved question relates to the underlying mechanism by which the vascular cells detect a decrease in oxygen tension and translate that into a signal that triggers the functional response. A growing body of work implicates the mitochondria, which appear to function as O2 sensors by initiating a redox-signaling pathway that leads to the activation of downstream effectors that regulate vascular tone. However, the direction of this redox signal has been the subject of controversy. Part of the problem has been the lack of appropriate tools to assess redox signaling in live cells. Recent advancements in the development of redox sensors have led to studies that help to clarify the nature of the hypoxia-induced redox signaling by reactive oxygen species (ROS). Moreover, these studies provide valuable insight regarding the basis for discrepancies in earlier studies of the hypoxia-induced mechanism of redox signaling. Based on recent work, it appears that the O2 sensing mechanism in both the PA and SA are identical, that mitochondria function as the site of O2 sensing, and that increased ROS release from these organelles leads to the activation of cell-specific, downstream vascular responses.


Asunto(s)
Músculo Liso/fisiología , Oxígeno/metabolismo , Resistencia Vascular/fisiología , Animales , Vasos Sanguíneos/citología , Hipoxia de la Célula/fisiología , Humanos , Mitocondrias/metabolismo , Músculo Liso/ultraestructura , Arteria Pulmonar/citología , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación/fisiología
16.
Am J Chin Med ; 38(3): 569-84, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20503473

RESUMEN

Doxorubicin (Dox) is one of the most widely used and successful chemotherapeutic antitumor drugs. Its clinical application is highly limited due to its cumulative dose-related cardiotoxicity. Proposed mechanisms include the generation of reactive oxygen species (ROS)-mediated oxidative stress. Therefore, reducing oxidative stress should be protective against Dox-induced cardiotoxicity. To determine whether antioxidant, grape seed proanthocyanidin extract (GSPE) attenuates Dox-induced ROS generation and protects cardiomyocytes from Dox-induced oxidant injury, cultured primary cardiomyocytes were treated with doxorubicin (Dox, 10 microM) alone or GSPE (50 microg/ml) with Dox (10 microM) for 24 hours. Dox increased intracellular ROS production as measured by 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, induced significant cell death as assessed by propidium iodide, and declined the redox ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) and disrupted mitochondrial membrane potential as determined by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethlbenzimidazole-carbocyanide iodine (JC-1). Analysis of agarose gel electrophoresis revealed Dox-induced nuclear DNA damage with the ladder like fragmentation. GSPE treatment suppressed those alterations. Electron Spin Resonance (ESR) spectroscopy data also showed that GSPE strongly scavenged hydroxyl radical, superoxide and DPPH radicals. Together, these findings indicate that GSPE in combination with Dox has protective effect against Dox-induced toxicity in cardiomyocytes, which may be in part attributed to its antioxidative activity. Importantly, flow cytometric analysis demonstrated that co-treatment of Dox and GSPE did not decrease the proliferation-inhibitory effect of Dox in MCF-7 human breast carcinoma cells. Thus, GSPE may be a promising adjuvant to prevent cardiotoxicity without interfering with antineoplastic activity during chemotherapeutic treatment with Dox.


Asunto(s)
Doxorrubicina/farmacología , Extracto de Semillas de Uva/farmacología , Miocitos Cardíacos/efectos de los fármacos , Proantocianidinas/farmacología , Animales , Antibióticos Antineoplásicos/farmacología , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Fragmentación del ADN/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Citometría de Flujo , Depuradores de Radicales Libres/farmacología , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Antioxid Redox Signal ; 12(5): 603-10, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19747063

RESUMEN

Phase I of the hypoxic pulmonary vasoconstriction (HPV) response begins upon transition to hypoxia and involves an increase in cytosolic calcium ([Ca(2+)](i)). Phase II develops during prolonged hypoxia and involves increases in constriction without further increases in [Ca(2+)](i), suggesting an increase in Ca(2+) sensitivity. Prolonged hypoxia activates RhoA and RhoA kinase, which may increase Ca(2+) sensitivity, but the mechanism is unknown. We previously found that reactive oxygen species (ROS) trigger Phase I. We therefore asked whether ROS generation during prolonged hypoxia activates RhoA in PA smooth muscle cells (PASMCs) and endothelial cells (PAECs) during Phase II. By using a cytosolic redox sensor, RoGFP, we detected increased oxidant signaling in prolonged hypoxia in PASMCs (29.8 +/- 1.3% to 39.8 +/- 1.4%) and PAECs (25.9 +/- 2.1% to 43.7.9 +/- 3.5%), which was reversed on the return to normoxia and was attenuated with EUK-134 in both cell types. RhoA activity increased in PASMCs and PAECs during prolonged hypoxia (6.4 +/- 1.2-fold and 5.8 +/- 1.6-fold) and with exogenous H(2)O(2) (4.1- and 2.3-fold, respectively). However, abrogation of the ROS signal in PASMCs or PAECs with EUK-134 or anoxia failed to attenuate the increased RhoA activity. Thus, the ROS signal is sustained during prolonged hypoxia in PASMCs and PAECs, and this is sufficient but not required for RhoA activation.


Asunto(s)
Células Endoteliales/metabolismo , Hipoxia/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Antioxidantes/metabolismo , Células Cultivadas , Células Endoteliales/citología , Activación Enzimática , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/metabolismo , Oxidación-Reducción , Ratas , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Antioxid Redox Signal ; 12(5): 595-602, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19747064

RESUMEN

Precapillary arteries constrict during alveolar hypoxia in a response known as hypoxic pulmonary vasoconstriction (HPV). The mechanism by which pulmonary arterial smooth muscle cells (PASMCs) detect a decrease in Po(2) and trigger contraction is not fully understood. Previous studies in cultured PASMCs show that hypoxia induces an increase in reactive oxygen species (ROS) production, but these results may not reflect responses of PASMCs in their native tissue environment. We therefore assessed hypoxia-induced changes in cytosolic ROS in PASMCs of precision-cut mouse lung slices expressing the redox-sensitive protein, RoGFP. Superfusion of lung slices with hypoxic media (1.5% O(2)) resulted in a significant oxidation of RoGFP from normoxic baseline that was attenuated by overexpression of cytosolic catalase. Hypoxic superfusion also increased [Ca(2+)](i) above normoxic baseline; this response was significantly attenuated by cytosolic catalase overexpression or by the administration of EUK134, a synthetic SOD-catalase mimetic. The hypoxia-induced increase in [Ca(2+)](i) was abolished in the absence of extracellular Ca(2+), indicating that ROS signals trigger entry of extracellular calcium. Collectively, these results indicate that an increase in cytosolic ROS signaling is required for the increase in [Ca(2+)](i) in PASMCs in precision-cut mouse lung slices during the acute HPV response.


Asunto(s)
Calcio/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/metabolismo , Ratones , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Oxidación-Reducción
19.
Circ Res ; 106(3): 526-35, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20019331

RESUMEN

RATIONALE: Recent studies have implicated mitochondrial reactive oxygen species (ROS) in regulating hypoxic pulmonary vasoconstriction (HPV), but controversy exists regarding whether hypoxia increases or decreases ROS generation. OBJECTIVE: This study tested the hypothesis that hypoxia induces redox changes that differ among subcellular compartments in pulmonary (PASMCs) and systemic (SASMCs) smooth muscle cells. METHODS AND RESULTS: We used a novel, redox-sensitive, ratiometric fluorescent protein sensor (RoGFP) to assess the effects of hypoxia on redox signaling in cultured PASMCs and SASMCs. Using genetic targeting sequences, RoGFP was expressed in the cytosol (Cyto-RoGFP), the mitochondrial matrix (Mito-RoGFP), or the mitochondrial intermembrane space (IMS-RoGFP), allowing assessment of oxidant signaling in distinct intracellular compartments. Superfusion of PASMCs or SASMCs with hypoxic media increased oxidation of both Cyto-RoGFP and IMS-RoGFP. However, hypoxia decreased oxidation of Mito-RoGFP in both cell types. The hypoxia-induced oxidation of Cyto-RoGFP was attenuated through the overexpression of cytosolic catalase in PASMCs. CONCLUSIONS: These results indicate that hypoxia causes a decrease in nonspecific ROS generation in the matrix compartment, whereas it increases regulated ROS production in the IMS, which diffuses to the cytosol of both PASMCs and SASMCs.


Asunto(s)
Hipoxia de la Célula/fisiología , Proteínas Fluorescentes Verdes/análisis , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Catalasa/biosíntesis , Catalasa/genética , Compartimento Celular , Células Cultivadas/metabolismo , Medios de Cultivo Condicionados/farmacología , Citosol/enzimología , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Mitocondrias/metabolismo , Oxidación-Reducción , Arteria Pulmonar/citología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Arteria Renal/citología , Vasoconstricción/fisiología
20.
Exp Physiol ; 93(1): 133-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17993507

RESUMEN

Hypoxic pulmonary vasoconstriction (HPV) becomes activated in response to alveolar hypoxia and, although the characteristics of HPV have been well described, the underlying mechanism of O(2) sensing which initiates the HPV response has not been fully established. Mitochondria have long been considered as a putative site of oxygen sensing because they consume O(2) and therefore represent the intracellular site with the lowest oxygen tension. However, two opposing theories have emerged regarding mitochondria-dependent O(2) sensing during hypoxia. One model suggests that there is a decrease in mitochondrial reactive oxygen species (ROS) levels during the transition from normoxia to hypoxia, resulting in the shift in cytosolic redox to a more reduced state. An alternative model proposes that hypoxia paradoxically increases mitochondrial ROS signalling in pulmonary arterial smooth muscle. Experimental resolution of the question of whether the mitochondrial ROS levels increase or decrease during hypoxia has been problematic owing to the technical limitations of the tools used to assess oxidant stress as well as the pharmacological agents used to inhibit the mitochondrial electron transport chain. However, recent developments in genetic techniques and redox-sensitive probes may allow us eventually to reach a consensus concerning the O(2) sensing mechanism underlying HPV.


Asunto(s)
Hipoxia/sangre , Hipoxia/fisiopatología , Oxígeno/sangre , Circulación Pulmonar/fisiología , Vasoconstricción/fisiología , Animales , Humanos , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA