Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 204(7): e0013722, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35703565

RESUMEN

Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Shigella flexneri , Proteínas Bacterianas/metabolismo , Citarabina/metabolismo , Proteínas de Unión al ADN/metabolismo , Retroalimentación , Shigella flexneri/genética , Shigella flexneri/metabolismo , Transcripción Genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
Genes (Basel) ; 10(2)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781432

RESUMEN

The transcriptional anti-silencing and DNA-binding protein, VirB, is essential for the virulence of Shigella species and, yet, sequences required for VirB-DNA binding are poorly understood. While a 7-8 bp VirB-binding site has been proposed, it was derived from studies at a single VirB-dependent promoter, icsB. Our previous in vivo studies at a different VirB-dependent promoter, icsP, found that the proposed VirB-binding site was insufficient for regulation. Instead, the required site was found to be organized as a near-perfect inverted repeat separated by a single nucleotide spacer. Thus, the proposed 7-8 bp VirB-binding site needed to be re-evaluated. Here, we engineer and validate a molecular tool to capture protein-DNA binding interactions in vivo. Our data show that a sequence organized as a near-perfect inverted repeat is required for VirB-DNA binding interactions in vivo at both the icsB and icsP promoters. Furthermore, the previously proposed VirB-binding site and multiple sites found as a result of its description (i.e., sites located at the virB, virF, spa15, and virA promoters) are not sufficient for VirB to bind in vivo using this tool. The implications of these findings are discussed.


Asunto(s)
Proteínas Bacterianas/genética , Disentería Bacilar/genética , Shigella flexneri/genética , Transcripción Genética , Sitios de Unión , Proteínas de Unión al ADN/genética , Disentería Bacilar/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Chaperonas Moleculares/genética , Regiones Promotoras Genéticas , Dominios Proteicos/genética , Shigella flexneri/patogenicidad , Factores de Transcripción/genética , Factores de Virulencia/genética
3.
Mol Microbiol ; 108(5): 505-518, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29453862

RESUMEN

Transcriptional silencing and anti-silencing mechanisms modulate bacterial physiology and virulence in many human pathogens. In Shigella species, many virulence plasmid genes are silenced by the histone-like nucleoid structuring protein H-NS and anti-silenced by the virulence gene regulator VirB. Despite the key role that these regulatory proteins play in Shigella virulence, their mechanisms of transcriptional control remain poorly understood. Here, we characterize the regulatory elements and their relative spacing requirements needed for the transcriptional silencing and anti-silencing of icsP, a locus that requires remotely located regulatory elements for both types of transcriptional control. Our findings highlight the flexibility of the regulatory elements' positions with respect to each other, and yet, a molecular roadblock docked between the VirB binding site and the upstream H-NS binding region abolishes transcriptional anti-silencing by VirB, providing insight into transcriptional anti-silencing. Our study also raises the need to re-evaluate the currently proposed VirB binding site. Models of transcriptional silencing and anti-silencing at this genetic locus are presented, and the implications for understanding these regulatory mechanisms in bacteria are discussed.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Represoras/metabolismo , Shigella flexneri/genética , Shigella flexneri/patogenicidad , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos/genética , Humanos , Plásmidos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Transcripción Genética , Virulencia/genética
4.
Infect Immun ; 84(4): 1073-1082, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26831468

RESUMEN

The SlyA transcriptional regulator has important roles in the virulence and pathogenesis of several members of the Enterobacteriaceae family, including Salmonella enterica serovar Typhimurium and Escherichia coli. Despite the identification of the slyA gene in Shigella flexneri nearly 2 decades ago, as well as the significant conservation of SlyA among enteric bacteria, the role of SlyA in Shigella remains unknown. The genes regulated by SlyA in closely related organisms often are absent from or mutated inS. flexneri, and consequently many described SlyA-dependent phenotypes are not present. By characterizing the expression of slyA and determining its ultimate effect in this highly virulent organism, we postulated that novel SlyA-regulated virulence phenotypes would be identified. In this study, we report the first analysis of SlyA in Shigella and show that (i) the slyA gene is transcribed and ultimately translated into protein, (ii) slyA promoter activity is maximal during stationary phase and is negatively autoregulated and positively regulated by the PhoP response regulator, (iii) the exogenous expression of slyA rescues transcription and virulence-associated deficiencies during virulence-repressed conditions, and (iv) the absence of slyA significantly decreases acid resistance, demonstrating a novel and important role in Shigella virulence. Cumulatively, our study illustrates unexpected parallels between the less conserved S. flexneri and S Typhimurium slyA promoters as well as a unique role for SlyA in Shigella virulence that has not been described previously in any closely related organism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Shigella flexneri/patogenicidad , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Homeostasis , Regiones Promotoras Genéticas , Shigella flexneri/metabolismo , Factores de Transcripción/genética , Transcriptoma , Regulación hacia Arriba , Virulencia
5.
J Biol Chem ; 289(47): 32571-82, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25294881

RESUMEN

A genome-wide susceptibility assay was used to identify specific CpxR-dependent genes that facilitate Escherichia coli resistance to a model cationic antimicrobial peptide, protamine. A total of 115 strains from the Keio Collection, each of which contained a deletion at a demonstrated or predicted CpxR/CpxA-dependent locus, were tested for protamine susceptibility. One strain that exhibited high susceptibility carried a deletion of tolC, a gene that encodes the outer membrane component of multiple tripartite multidrug transporters. Concomitantly, two of these efflux systems, AcrAB/TolC and EmrAB/TolC, play major roles in protamine resistance. Activation of the CpxR/CpxA system stimulates mar transcription, suggesting a new regulatory circuit that enhances the multidrug resistance cascade. Tripartite multidrug efflux systems contribute to bacterial resistance to protamine differently from the Tat system. DNase I footprinting analysis demonstrated that the CpxR protein binds to a sequence located in the -35 and -10 regions of mar promoter. This sequence resembles the consensus CpxR binding site, however, on the opposite strand. aroK, a CpxR-dependent gene that encodes a shikimate kinase in the tryptophan biosynthesis pathway, was also found to facilitate protamine resistance. Specific aromatic metabolites from this pathway, such as indole, can stimulate expression of well studied CpxR-dependent genes degP and cpxP, which are not components of the tripartite multidrug transporters. Thus, we propose a novel mechanism for E. coli to modulate resistance to protamine and likely other cationic antimicrobial peptides in which the CpxR/CpxA system up-regulates mar transcription in response to specific aromatic metabolites, subsequently stimulating the multidrug resistance cascade.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Protaminas/farmacología , Proteínas Quinasas/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Modelos Genéticos , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Quinasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba
6.
EMBO J ; 30(8): 1485-96, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21399613

RESUMEN

We have characterized a 17-residue peptide, MgtL, which is translated specifically in high Mg(2+) from an open reading frame (ORF) embedded in the Mg(2+) riboswitch domain, previously identified in the 5' leader region of Mg(2+) transporter gene mgtA in Salmonella. We demonstrate that mgtL translation is required to prematurely terminate mgtA transcription. Abrogation of mgtL translation by mutation of its start codon results in transcription of the mgtA-coding region in high Mg(2+), suggesting that ribosome stalling is not required for preventing premature transcription termination. Consistently, the Mg(2+) riboswitch responds to cytoplasmic Mg(2+), but not to proline or arginine, both repeatedly present in the MgtL sequence, to mediate mgtL translation-coupled regulation. RNA structural probing and nucleotide substitution analysis show that the riboswitch loop A region alters base pairing in response to Mg(2+), and favours stem-loop A1 in high Mg(2+), subsequently opening the ribosome-binding sequence for mgtL translation. Presumably, mgtL ORF directs translation to localize a ribosome in cis to act on downstream RNA in a manner similar to some upstream ORFs in prokaryotes and eukaryotes.


Asunto(s)
Magnesio/farmacología , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Señales de Clasificación de Proteína/genética , Ribosomas/fisiología , Riboswitch/fisiología , Transcripción Genética/efectos de los fármacos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Codón Iniciador , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
7.
J Biol Chem ; 286(7): 5529-39, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21149452

RESUMEN

We demonstrate that the twin arginine translocation (Tat) system contributes to bacterial resistance to cationic antimicrobial peptides (CAMPs). Our results show that a deletion at the tatC gene, which encodes a subunit of the Tat complex, caused Salmonella and Escherichia coli to become susceptible to protamine. We screened chromosomal loci that encode known and predicted Tat-dependent proteins and found that two N-acetylmuramoyl-l-alanine amidases, encoded by amiA and amiC, elevated bacterial resistance to protamine and α-helical peptides magainin 2 and melittin but not to ß-sheet defensin HNP-1 and lipopeptide polymyxin B. Genetic analysis suggests that transcription of both amiA and amiC loci in Salmonella is up-regulated by the CpxR/CpxA two-component system when nlpE is overexpressed. A footprinting analysis reveals that CpxR protein can interact with amiA and amiC promoters at the CpxR box, which is localized between the predicted -10 and -35 regions but present on different strands in these two genes. In addition, our results show that activation of the CpxR/CpxA system can facilitate protamine resistance because nlpE overexpression elevates this resistance in the wild-type strain but not the cpxR deletion mutant. Thus, we uncover a new transcriptional regulation pathway in which the Cpx envelope stress response system modulates the integrity of the cell envelope in part by controlling peptidoglycan amidase activity, which confers bacterial resistance to protamine and α-helical CAMPs. Our studies have important implications for understanding transcriptional regulation of peptidoglycan metabolism and also provide new insights into the role of the bacterial envelope in CAMP resistance.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , N-Acetil Muramoil-L-Alanina Amidasa/biosíntesis , Proteínas Quinasas/metabolismo , Salmonella typhimurium/metabolismo , Regulación hacia Arriba/fisiología , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sitios Genéticos/fisiología , N-Acetil Muramoil-L-Alanina Amidasa/genética , Regiones Promotoras Genéticas/fisiología , Proteínas Quinasas/genética , Salmonella typhimurium/genética , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...