Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Biomacromolecules ; 25(7): 4406-4419, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38847048

RESUMEN

Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or noncovalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels cross-linked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective cross-link density. Furthermore, these materials are found to exhibit self-healing and strain-memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester cross-links, interchain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain-stiffening. The multiresponsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications.


Asunto(s)
Hidrogeles , Hidrogeles/química , Viscosidad , Estrés Mecánico , Carboximetilcelulosa de Sodio/química , Celulosa/química , Taninos/química , Enlace de Hidrógeno
2.
Biomacromolecules ; 25(7): 4482-4491, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38870408

RESUMEN

Supramolecular peptide-drug conjugates (sPDCs) are prepared by covalent attachment of a drug moiety to a peptide motif programmed for one-dimensional self-assembly, with subsequent physical entanglement of these fibrillar structures enabling formation of nanofibrous hydrogels. This class of prodrug materials presents an attractive platform for mass-efficient and site-specific delivery of therapeutic agents using a discrete, single-component molecular design. However, a continued challenge in sPDC development is elucidating relationships between supramolecular interactions in their drug and peptide domains and the resultant impacts of these domains on assembly outcomes and material properties. Inclusion of a saturated alkyl segment alongside the prodrug in the hydrophobic domain of sPDCs could relieve some of the necessity for ordered, prodrug-produg interactions. Accordingly, nine sPDCs are prepared here to iterate the design variables of amino acid sequence and hydrophobic prodrug-alkyl block design. All molecules spontaneously formed hydrogels under physiological conditions, indicating a less hindered thermodynamic path to self-assembly relative to previous prodrug-only designs. However, material studies on the supramolecular arrangement, formation, and mechanical properties of the resultant sPDC hydrogels as well as their drug release profiles showed complex relationships between the hydrophobic and peptide domains in the formation and function of the resulting assemblies. Together, these results indicate that sPDC material properties are intrinsically linked to holistic molecular design with coupled contributions from their prodrug and peptide domains in directing properties of the emergent materials.


Asunto(s)
Hidrogeles , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos , Profármacos , Profármacos/química , Péptidos/química , Hidrogeles/química , Diseño de Fármacos , Liberación de Fármacos
3.
Diabetes ; 73(7): 1032-1038, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608241

RESUMEN

In 2014, the American Diabetes Association instituted a novel funding paradigm to support diabetes research through its Pathway to Stop Diabetes program. This program took a multifaceted approach to providing key funding to diabetes researchers to advance a broad spectrum of research programs on all aspects of understanding, managing, and treating diabetes. Here, the personal perspective of a 2019 Pathway Accelerator awardee is offered, describing a research program seeking to advance a materials-centered approach to engineering glucose-responsive devices and new delivery tools for better therapeutic outcomes in treating diabetes. This is offered alongside a personal reflection on 5 years of support from the ADA Pathway Program.


Asunto(s)
Diabetes Mellitus , Humanos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/terapia , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hipoglucemiantes/uso terapéutico
4.
J Mater Chem B ; 12(19): 4666-4672, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647183

RESUMEN

The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Hidrogeles , Imidazoles , Hidrogeles/química , Hidrogeles/síntesis química , Concentración de Iones de Hidrógeno , Imidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Biocatálisis , Estructura Molecular , Muramidasa/química , Muramidasa/metabolismo
5.
Diabetes ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602880

RESUMEN

In 2014, the American Diabetes Association instituted a novel funding paradigm to support diabetes research through its Pathway to Stop Diabetes® Program. Pathway took a multifaceted approach to provide key funding to diabetes researchers in advancing a broad spectrum of research programs centered on all aspects of understanding, managing, and treating diabetes. Herein the personal perspective of a 2019 Pathway Accelerator awardee is offered, describing a research program seeking to advance a materials-centered approach to engineering glucose-responsive devices and new delivery tools for better therapeutic outcomes in treating diabetes. This is offered alongside a personal reflection on five years of support from the ADA Pathway Program.

6.
J Am Chem Soc ; 146(11): 7498-7505, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38465595

RESUMEN

Biology achieves remarkable function through processes arising from spontaneous or transient liquid-liquid phase separation (LLPS) of proteins and other biomolecules. While polymeric systems can achieve similar phenomena through simple or complex coacervation, LLPS with supramolecular materials has been less commonly shown. Functional applications for synthetic LLPS systems are an expanding area of emphasis, with particular focus on capturing the transient and dynamic state of these structures for use in biomedicine. Here, a net-cationic supramolecular peptide amphiphile building block with a glucose-binding motif is shown that forms LLPS structures when combined with a net-negatively charged therapeutic protein, dasiglucagon, in the presence of glucose. The droplets that arise are dynamic and coalesce quickly. However, the interface can be stabilized by addition of a 4-arm star PEG. When the stabilized droplets formed in glucose are transferred to a bulk phase containing different glucose concentrations, their stability and lifetime decrease according to bulk glucose concentration. This glucose-dependent formation translates into an accelerated release of dasiglucagon in the absence of glucose; this hormone analogue itself functions therapeutically to correct low blood glucose (hypoglycemia). These droplets also offer function in mitigating the most severe effects of hypoglycemia arising from an insulin overdose through delivery of dasiglucagon in a mouse model of hypoglycemic rescue. Accordingly, this approach to use complexation between a supramolecular peptide amphiphile and a therapeutic protein in the presence of glucose leads to droplets with functional potential to dissipate for the release of the therapeutic material in low blood glucose environments.


Asunto(s)
Glucemia , Hipoglucemia , Animales , Ratones , Glucosa , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/metabolismo , Proteínas , Polímeros
7.
BMC Cardiovasc Disord ; 24(1): 172, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509472

RESUMEN

BACKGROUND: Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans might be explained by certain survival advantages (antagonistic pleiotropy). METHODS: Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardiovascular magnetic resonance (CMR). RESULTS: Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection fraction, E/e', posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocardial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial contraction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1-7%, p = 0.016) using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0-1%, p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0-5%, p = 0.059). CONCLUSIONS: By triangulating results in four independent cohorts, across imaging modalities (echocardiography and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain its persistence in human populations.


Asunto(s)
Apolipoproteína E4 , Enfermedad de la Arteria Coronaria , Adolescente , Anciano , Niño , Humanos , Alelos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Enfermedad de la Arteria Coronaria/genética , Genotipo , Estudios Longitudinales , Miocardio , Fenotipo
8.
N Z Med J ; 137(1590): 77-92, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386857

RESUMEN

Electrosurgery is commonly used during a range of operations in order to maintain effective haemostasis. This can cause electromagnetic interference (EMI) with cardiac implanted electronic devices (CIEDs), which prevents normal device function. CIEDs include pacemakers (PPM), implantable cardiac defibrillators (ICD), cardiac resynchronisation therapy devices-both pacemakers and defibrillators (CRT-P/CRT-D)-and implantable loop recorders (ILRs). Damage to the generator, inhibition of pacing, activation of asynchronous pacing and ventricular fibrillation can all be induced by electrocautery. An active management plan for CIEDs during electrosurgery is critical to minimise these adverse effects of EMI. Purpose: To facilitate the safe and effective peri-operative management of CIED patients during electrosurgery.


Asunto(s)
Desfibriladores Implantables , Electrocoagulación , Humanos , Nueva Zelanda , Consenso , Electrónica
9.
J Am Coll Cardiol ; 83(11): 1042-1055, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38385929

RESUMEN

BACKGROUND: Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties. OBJECTIVES: The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype. METHODS: This was a prospective 211-participant CMR-ECGI multicenter study of 70 G+LVH-, 104 LVH+ (51 G+/53 G-), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to discriminate G+LVH- from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ventricular tachycardia. RESULTS: Compared with HV, subclinical HCM showed mean AT prolongation (P = 0.008) even with normal 12-lead electrocardiograms (ECGs) (P = 0.009), and repolarization was more spatially heterogenous (GRTc: P = 0.005) (23% had normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated with scar (all P < 0.05), and G+LVH+ had more fractionation than G-LVH+ (P = 0.002). The support vector machine discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]). CONCLUSIONS: In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural change and positive genetic status.


Asunto(s)
Cardiomiopatía Hipertrófica , Cicatriz , Humanos , Estudios Prospectivos , Cicatriz/patología , Imagen por Resonancia Cinemagnética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/genética , Electrocardiografía , Hipertrofia Ventricular Izquierda/diagnóstico , Imagen por Resonancia Magnética
10.
Macromol Biosci ; 24(1): e2300001, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36786665

RESUMEN

In an effort to augment the function of supramolecular biomaterials, recent efforts have explored the creation of hybrid materials that couple supramolecular and covalent components. Here, the benzenetricarboxamide (BTA) supramolecular polymer motif is modified to present a phenylboronic acid (PBA) in order to promote the crosslinking of 1D BTA stacks by PBA-diol dynamic-covalent bonds through the addition of a multi-arm diol-bearing crosslinker. Interestingly, the combination of these two motifs serves to frustrate the resulting assembly process, yielding hydrogels with worse mechanical properties than those prepared without the multi-arm diol crosslinker. Both systems with and without the crosslinker do, however, respond to the presence of a physiological level of glucose with a reduction in their mechanical integrity; repulsive electrostatic interactions in the BTA stacks occur in both cases upon glucose binding, with added competition from glucose with PBA-diol bonds amplifying glucose response in the hybrid material. Accordingly, the present results point to an unexpected outcome of reduced hydrogel mechanics, yet increased glucose response, when two disparate dynamic motifs of BTA supramolecular polymerization and PBA-diol crosslinking are combined, offering a vision for future preparation of glucose-responsive supramolecular biomaterials.


Asunto(s)
Ácidos Borónicos , Glucosa , Ácidos Borónicos/química , Hidrogeles/química , Materiales Biocompatibles
11.
Adv Mater ; 36(16): e2311498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095904

RESUMEN

Peptide self-assembly is a powerful tool to prepare functional materials at the nanoscale. Often, the resulting materials have high aspect-ratio, with intermolecular ß-sheet formation underlying 1D fibrillar structures. Inspired by dynamic structures in nature, peptide self-assembly is increasingly moving toward stimuli-responsive designs wherein assembled structures are formed, altered, or dissipated in response to a specific cue. Here, a peptide bearing a prosthetic glucose-binding phenylboronic acid (PBA) is demonstrated to self-assemble into an uncommon nanocoil morphology. These nanocoils arise from antiparallel ß-sheets, with molecules aligned parallel to the long axis of the coil. The binding of glucose to the PBA motif stabilizes and elongates the nanocoil, driving entanglement and gelation at physiological glucose levels. The glucose-dependent gelation of these materials is then explored for the encapsulation and release of a therapeutic agent, glucagon, that corrects low blood glucose levels. Accordingly, the release of glucagon from the nanocoil hydrogels is inversely related to glucose level. When evaluated in a mouse model of severe acute hypoglycemia, glucagon delivered from glucose-stabilized nanocoil hydrogels demonstrates increased protection compared to delivery of the agent alone or within a control nanocoil hydrogel that is not stabilized by glucose.


Asunto(s)
Ácidos Borónicos , Glucagón , Glucosa , Animales , Ratones , Glucosa/metabolismo , Hidrogeles/química , Péptidos/química
12.
Adv Mater ; 36(5): e2308965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994248

RESUMEN

The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose-directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once-weekly administration, are on the horizon, there is still no approved therapy that offers glucose-responsive insulin function. Herein, a nanoscale complex combining both electrostatic- and dynamic-covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high-affinity glucose-binding motif yields an injectable insulin depot affording both glucose-directed and long-lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose-responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic- and dynamic-covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose-responsive insulin depot for week-long control following a single routine injection.


Asunto(s)
Dendrímeros , Diabetes Mellitus , Porcinos , Animales , Ratones , Insulina , Glucosa , Glucemia
13.
Small ; 20(9): e2307585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849034

RESUMEN

The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010 m-1 , directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower-affinity ß-cyclodextrin-adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high-affinity CB[7]-adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high-affinity CB[7]-guest recognition as an orthogonal axis to drive self-assembly in DNA nanotechnology.


Asunto(s)
Adamantano , Nanofibras , Nanoestructuras , Nanotecnología , ADN
14.
Macromol Biosci ; 24(1): e2300533, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38050925
15.
ACS Appl Mater Interfaces ; 15(50): 58181-58195, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38065571

RESUMEN

The dynamics of the extracellular matrix (ECM) influences stem cell differentiation and morphogenesis into complex lymphatic networks. While dynamic hydrogels with stress relaxation properties have been developed, many require detailed chemical processing to tune viscoelasticity, offering a limited opportunity for in situ and spatiotemporal control. Here, a hyaluronic acid (HA) hydrogel is reported with viscoelasticity that is controlled and spatially tunable using UV light to direct the extent of supramolecular and covalent cross-linking interactions. This is achieved using UV-mediated photodimerization of a supramolecular ternary complex of pendant trans-Brooker's Merocyanine (BM) guests and a cucurbit[8]uril (CB[8]) macrocycle. The UV-mediated conversion of this supramolecular complex to its covalent photodimerized form is catalyzed by CB[8], offering a user-directed route to spatially control hydrogel dynamics in combination with orthogonal photopatterning by UV irradiation through photomasks. This material thus achieves spatial heterogeneity of substrate dynamics, recreating features of native ECM without the need for additional chemical reagents. Moreover, these dynamic hydrogels afford spatial control of substrate mechanics to direct human lymphatic endothelial cells (LECs) to form lymphatic cord-like structures (CLS). Specifically, cells cultured on viscoelastic supramolecular hydrogels have enhanced formation of CLS, arising from increased expression of key lymphatic markers, such as LYVE-1, Podoplanin, and Prox1, compared to static elastic hydrogels prepared from fully covalent cross-linking. Viscoelastic hydrogels promote lymphatic CLS formation through the expression of Nrp2, VEGFR2, and VEGFR3 to enhance the VEGF-C stimulation. Overall, viscoelastic supramolecular hydrogels offer a facile route to spatially control lymphatic CLS formation, providing a tool for future studies of basic lymphatic biology and tissue engineering applications.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Humanos , Hidrogeles/química , Ácido Hialurónico/química , Células Endoteliales , Matriz Extracelular/química , Morfogénesis , Factores de Transcripción
16.
J Cardiovasc Magn Reson ; 25(1): 73, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044439

RESUMEN

BACKGROUND: Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo. METHODS: CMR was prospectively performed at 3T on participants after collecting surface potentials using the locally designed and fabricated 256-lead ECGI vest. Epicardial maps were reconstructed to generate local EP parameters such as activation time (AT), repolarization time (RT) and activation recovery intervals (ARI). 20 intra- and inter-observer and 8 scan re-scan repeatability tests. RESULTS: 77 participants were recruited: 27 young healthy volunteers (HV, 38.9 ± 8.5 years, 35% male) and 50 older persons (77.0 ± 0.1 years, 52% male). CMR-ECGI was achieved in all participants using the same reusable, washable vest without complications. Intra- and inter-observer variability was low (correlation coefficients [rs] across unipolar electrograms = 0.99 and 0.98 respectively) and scan re-scan repeatability was high (rs between 0.81 and 0.93). Compared to young HV, older persons had significantly longer RT (296.8 vs 289.3 ms, p = 0.002), ARI (249.8 vs 235.1 ms, p = 0.002) and local gradients of AT, RT and ARI (0.40 vs 0.34 ms/mm, p = 0,01; 0.92 vs 0.77 ms/mm, p = 0.03; and 1.12 vs 0.92 ms/mm, p = 0.01 respectively). CONCLUSION: Our high-throughput CMR-ECGI solution is feasible and shows good reproducibility in younger and older participants. This new technology is now scalable for high throughput research to provide novel insights into arrhythmogenesis and potentially pave the way for more personalised risk stratification. CLINICAL TRIAL REGISTRATION: Title: Multimorbidity Life-Course Approach to Myocardial Health-A Cardiac Sub-Study of the MRC National Survey of Health and Development (NSHD) (MyoFit46). National Clinical Trials (NCT) number: NCT05455125. URL: https://clinicaltrials.gov/ct2/show/NCT05455125?term=MyoFit&draw=2&rank=1.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Anciano , Femenino , Humanos , Masculino , Estudios de Factibilidad , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Adulto , Persona de Mediana Edad
17.
Clin Epigenetics ; 15(1): 164, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853450

RESUMEN

BACKGROUND: DNA methylation (DNAm) age acceleration (AgeAccel) and cardiac age by 12-lead advanced electrocardiography (A-ECG) are promising biomarkers of biological and cardiac aging, respectively. We aimed to explore the relationships between DNAm age and A-ECG heart age and to understand the extent to which DNAm AgeAccel relates to cardiovascular (CV) risk factors in a British birth cohort from 1946. RESULTS: We studied four DNAm ages (AgeHannum, AgeHorvath, PhenoAge, and GrimAge) and their corresponding AgeAccel. Outcomes were the results from two publicly available ECG-based cardiac age scores: the Bayesian A-ECG-based heart age score of Lindow et al. 2022 and the deep neural network (DNN) ECG-based heart age score of Ribeiro et al. 2020. DNAm AgeAccel was also studied relative to results from two logistic regression-based A-ECG disease scores, one for left ventricular (LV) systolic dysfunction (LVSD), and one for LV electrical remodeling (LVER). Generalized linear models were used to explore the extent to which any associations between biological cardiometabolic risk factors (body mass index, hypertension, diabetes, high cholesterol, previous cardiovascular disease [CVD], and any CV risk factor) and the ECG-based outcomes are mediated by DNAm AgeAccel. We derived the total effects, average causal mediation effects (ACMEs), average direct effects (ADEs), and the proportion mediated [PM] with their 95% confidence intervals [CIs]. 498 participants (all 60-64 years) were included, with the youngest ECG heart age being 27 and the oldest 90. When exploring the associations between cardiometabolic risk factors and Bayesian A-ECG cardiac age, AgeAccelPheno appears to be a partial mediator, as ACME was 0.23 years [0.01, 0.52] p = 0.028 (i.e., PM≈18%) for diabetes, 0.34 [0.03, 0.74] p = 0.024 (i.e., PM≈15%) for high cholesterol, and 0.34 [0.03, 0.74] p = 0.024 (PM≈15%) for any CV risk factor. Similarly, AgeAccelGrim mediates ≈30% of the relationship between diabetes or high cholesterol and the DNN ECG-based heart age. When exploring the link between cardiometabolic risk factors and the A-ECG-based LVSD and LVER scores, it appears that AgeAccelPheno or AgeAccelGrim mediate 10-40% of these associations. CONCLUSION: By the age of 60, participants with accelerated DNA methylation appear to have older, weaker, and more electrically impaired hearts. We show that the harmful effects of CV risk factors on cardiac age and health, appear to be partially mediated by DNAm AgeAccelPheno and AgeAccelGrim. This highlights the need to further investigate the potential cardioprotective effects of selective DNA methyltransferases modulators.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Lactante , Metilación de ADN , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Teorema de Bayes , Factores de Riesgo , Envejecimiento/genética , Factores de Riesgo de Enfermedad Cardiaca , Diabetes Mellitus/genética , Colesterol , Epigénesis Genética
18.
Circulation ; 148(10): 808-818, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37463608

RESUMEN

BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.


Asunto(s)
Cardiomiopatía Hipertrófica , Hipertrofia Ventricular Izquierda , Humanos , Sarcómeros/genética , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Mutación , Cardiomiopatía Hipertrófica/diagnóstico , Fenotipo , Biomarcadores , Fibrosis
19.
Chem Sci ; 14(18): 4796-4805, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37181784

RESUMEN

Mechanoresponsiveness is a ubiquitous feature of soft materials in nature; biological tissues exhibit both strain-stiffening and self-healing in order to prevent and repair deformation-induced damage. These features remain challenging to replicate in synthetic and flexible polymeric materials. In recreating both the mechanical and structural features of soft biological tissues, hydrogels have been often explored for a number of biological and biomedical applications. However, synthetic polymeric hydrogels rarely replicate the mechanoresponsive character of natural biological materials, failing to match both strain-stiffening and self-healing functionality. Here, strain-stiffening behavior is realized in fully synthetic ideal network hydrogels prepared from flexible 4-arm polyethylene glycol macromers via dynamic-covalent boronate ester crosslinks. Shear rheology reveals the strain-stiffening response in these networks as a function of polymer concentration, pH, and temperature. Across all three of these variables, hydrogels of lower stiffness exhibit higher degrees of stiffening, as quantified by the stiffening index. The reversibility and self-healing nature of this strain-stiffening response is also evident upon strain-cycling. The mechanism underlying this unusual stiffening response is attributed to a combination of entropic and enthalpic elasticity in these crosslink-dominant networks, contrasting with natural biopolymers that primarily strain-stiffen due to a strain-induced reduction in conformational entropy of entangled fibrillar structures. This work thus offers key insights into crosslink-driven strain-stiffening in dynamic-covalent phenylboronic acid-diol hydrogels as a function of experimental and environmental parameters. Moreover, the biomimetic mechano- and chemoresponsive nature of this simple ideal-network hydrogel offers a promising platform for future applications.

20.
Acta Pharm Sin B ; 13(5): 2281-2290, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250160

RESUMEN

Aggregation represents a significant challenge for the long-term formulation stability of insulin therapeutics. The supramolecular PEGylation of insulin with conjugates of cucurbit[7]uril and polyethylene glycol (CB[7]‒PEG) has been shown to stabilize insulin formulations by reducing aggregation propensity. Yet prolonged in vivo duration of action, arising from sustained complex formation in the subcutaneous depot, limits the application scope for meal-time insulin uses and could increase hypoglycemic risk several hours after a meal. Supramolecular affinity of CB[7] in binding the B1-Phe residue on insulin is central to supramolecular PEGylation using this approach. Accordingly, here we synthesized N-terminal acid-modified insulin analogs to reduce CB[7] interaction affinity at physiological pH and reduce the duration of action by decreasing the subcutaneous depot effect of the formulation. These insulin analogs show weak to no interaction with CB[7]‒PEG at physiological pH but demonstrate high formulation stability at reduced pH. Accordingly, N-terminal modified analogs have in vitro and in vivo bioactivity comparable to native insulin. Furthermore, in a rat model of diabetes, the acid-modified insulin formulated with CB[7]‒PEG offers a reduced duration of action compared to native insulin formulated with CB[7]‒PEG. This work extends the application of supramolecular PEGylation of insulin to achieve enhanced stability while reducing the risks arising from a subcutaneous depot effect prolonging in vivo duration of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...