Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Phys Chem A ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970826

RESUMEN

This study evaluates the precision of widely recognized quantum chemical methodologies, CCSD(T), DLPNO-CCSD(T), and localized ph-AFQMC, for determining the thermochemistry of main group elements. DLPNO-CCSD(T) and localized ph-AFQMC, which offer greater scalability compared to canonical CCSD(T), have emerged over the past decade as pivotal in producing precise benchmark chemical data. Our investigation includes closed-shell, neutral molecules, focusing on their heat of formation and atomization energy sourced from four specific small molecule data sets. First, we selected molecules from the G2 and G3 data sets, noted for their reliable experimental heat of formation data. Additionally, we incorporate molecules from the W4-11 and W4-17 sets, which provide high-level theoretical reference values for atomization energy at 0 K. Our findings reveal that both DLPNO-CCSD(T) and ph-AFQMC methods are capable of achieving a root-mean-square deviation of less than 1 kcal/mol across the combined data set, aligning with the threshold for chemical accuracy. Moreover, we make efforts to confine the maximum deviations within 2 kcal/mol, a degree of precision that significantly broadens the applicability of these methods in fields such as biology and materials science.

2.
Opt Express ; 32(9): 16027-16039, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859240

RESUMEN

We present the theory and experimental results of a microwave photonic (MWP) filter based instantaneous frequency measurement system. A quantum dash mode-locked laser is used as an optical frequency comb source. With up to 41 flat comb lines and a real-time feedback loop for comb shaping, a set of MWP filters with linear frequency responses for either linear unit or dB unit are experimentally demonstrated. The maximum measurement frequency can be up to 20 GHz limited by the available test-and-measurement instruments. By using one MWP filter, the root-mean-square error is 51∼66 MHz, which can be improved to 42.2 MHz for linear unit, and 30.7 MHz for dB unit by using two MWP filters together.

3.
JMIR Hum Factors ; 11: e54145, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787603

RESUMEN

BACKGROUND: The fastest-growing neurological disorder is Parkinson disease (PD), a progressive neurodegenerative disease that affects 10 million people worldwide. PD is typically treated with levodopa, an oral pill taken to increase dopamine levels, and other dopaminergic agonists. As the disease advances, the efficacy of the drug diminishes, necessitating adjustments in treatment dosage according to the patient's symptoms and disease progression. Therefore, remote monitoring systems that can provide more detailed and accurate information on a patient's condition regularly are a valuable tool for clinicians and patients to manage their medication. The Parkinson's Remote Interactive Monitoring System (PRIMS), developed by PragmaClin Research Inc, was designed on the premise that it will be an easy-to-use digital system that can accurately capture motor and nonmotor symptoms of PD remotely. OBJECTIVE: We performed a usability evaluation in a simulated clinical environment to assess the ease of use of the PRIMS and determine whether the product offers suitable functionality for users in a clinical setting. METHODS: Participants were recruited from a user sign-up web-based database owned by PragmaClin Research Inc. A total of 11 participants were included in the study based on the following criteria: (1) being diagnosed with PD and (2) not being diagnosed with dementia or any other comorbidities that would make it difficult to complete the PRIMS assessment safely and independently. Patient users completed a questionnaire that is based on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale. Interviews and field notes were analyzed for underlying themes and topics. RESULTS: In total, 11 people with PD participated in the study (female individuals: n=5, 45%; male individuals: n=6, 55%; age: mean 66.7, SD 7.77 years). Thematic analysis of the observer's notes revealed 6 central usability issues associated with the PRIMS. These were the following: (1) the automated voice prompts are confusing, (2) the small camera is problematic, (3) the motor test exhibits excessive sensitivity to the participant's orientation and position in relation to the cameras, (4) the system poses mobility challenges, (5) navigating the system is difficult, and (6) the motor test exhibits inconsistencies and technical issues. Thematic analysis of qualitative interview responses revealed four central themes associated with participants' perspectives and opinions on the PRIMS, which were (1) admiration of purpose, (2) excessive system sensitivity, (3) video instructions preferred, and (4) written instructions disliked. The average system usability score was calculated to be 69.2 (SD 4.92), which failed to meet the acceptable system usability score of 70. CONCLUSIONS: Although multiple areas of improvement were identified, most of the participants showed an affinity for the overarching objective of the PRIMS. This feedback is being used to upgrade the current PRIMS so that it aligns more with patients' needs.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Interfaz Usuario-Computador , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación
4.
Opt Express ; 32(1): 217-229, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175050

RESUMEN

We investigate the capabilities and limitations of quantum-dash mode-locked lasers (QD-MLLDs) as optical frequency comb sources in coherent optical communication systems. We demonstrate that QD-MLLDs are on par with conventional single-wavelength narrow linewidth laser sources and can support high symbol rates and modulation formats. We manage to transmit 64 quadrature amplitude modulation (QAM) signals up to 80 GBd over 80 km of standard single-mode fiber (SSMF), which highlights the distinctive phase noise performance of the QD-MLLD. Using a 38.5 GHz (6 dB bandwidth) silicon photonic (SiP) modulator, we achieve a maximum symbol rate of 104 GBd with 16QAM signaling and a maximum net rate of 416 Gb/s per carrier in a single polarization setup and after 80 km-SSMF transmission. We also compare QD-MLLD performance with commercial narrow-linewidth integrable tunable laser assemblies (ITLAs) and explore their potential for use as local oscillators (LOs) and signal carriers. The QD-MLLD has 45 comb lines usable for transmission at a frequency spacing of 25 GHz, and an RF linewidth of 35 kHz.

5.
Appl Opt ; 62(32): 8696-8701, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38037987

RESUMEN

We demonstrate photonic beamforming using a quantum-dash (QD) optical frequency comb (OFC) source. Thanks to the 25 GHz free spectral range (FSR) and up to 40 comb lines available from the QD OFC, we can implement phased antenna arrays (PAAs) with directional radiation and scanning. We consider two types of PAAs: a uniform linear array (ULA) and a uniform planar array (UPA). By selecting different comb lines with a programmable optical filter, we can tune the FSR of the OFC source and realize a discrete scanning function. We evaluate the beam squint of the ULAs, and the results show that we can achieve broadband operation. Finally, we show that we can achieve both directional radiation and scanning simultaneously using the UPA.

6.
Micromachines (Basel) ; 14(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138398

RESUMEN

We present here a performance comparison of quantum-dash (Qdash) semiconductor amplifiers (SOAs) with three, five, eight, and twelve InAs dash layers grown on InP substrates. Other than the number of Qdash layers, the structures were identical. The eight-layer Qdash SOA gave the highest amplified spontaneous emission power (4.3 dBm) and chip gain (26.4 dB) at 1550 nm, with a 300 mA CW bias current and at 25 °C temperature, while SOAs with fewer Qdash layers (for example, three-layer Qdash SOA), had a wider ASE bandwidth (90 nm) and larger 3 dB gain saturated output power (18.2 dBm) in a shorter wavelength range. The noise figure (NF) of the SOAs increased nearly linearly with the number of Qdash layers. The longest gain peak wavelength of 1570 nm was observed for the 12-layer Qdash SOA. The most balanced performance was obtained with a five-layer Qdash SOA, with a 25.4 dB small-signal chip gain, 15.2 dBm 3 dB output saturated power, and 5.7 dB NF at 1532 nm, 300 mA and 25 °C. These results are better than those of quantum well SOAs reported in a recent review paper. The high performance of InAs/InP Qdash SOAs with different Qdash layers shown in this paper could be important for many applications with distinct requirements under uncooled scenarios.

7.
J Chem Theory Comput ; 19(21): 7567-7576, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37889331

RESUMEN

We formulate and characterize a new constraint for auxiliary-field quantum Monte Carlo (AFQMC) applicable for general fermionic systems, which allows for the accumulation of phase in the random walk but disallows walkers with a magnitude of phase greater than π with respect to the trial wave function. For short imaginary times, before walkers accumulate sizable phase values, this approach is equivalent to exact free projection, allowing one to observe the accumulation of bias associated with the constraint and thus estimate its magnitude a priori. We demonstrate the stability of this constraint over arbitrary imaginary times and system sizes, highlighting the removal of noise due to the fermionic sign problem. Benchmark total energies for a variety of weakly and strongly correlated molecular systems reveal a distinct bias with respect to standard phaseless AFQMC, with a comparative increase in accuracy given sufficient quality of the trial wave function for the set of studied cases. We then take this constraint, termed linecut AFQMC (lc-AFQMC), and systematically release it (lcR-AFQMC), providing a route to obtain a smooth bridge between constrained AFQMC and the exact free projection results.

8.
J Phys Chem A ; 127(44): 9178-9184, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37878768

RESUMEN

An important concern related to the performance of Li-ion batteries is the formation of a solid electrolyte interphase on the surface of the anode. This film is formed from the decomposition of electrolytes and can have important effects on the stability and performance. Here, we evaluate the decomposition pathway of ethylene carbonate and related organic electrolyte molecules using a series of density functional approximations and correlated wave function (WF) methods, including the coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and auxiliary-field quantum Monte Carlo (AFQMC). We find that the transition state barrier associated with ring opening varies widely across different functionals, ranging from 3.01 to 17.15 kcal/mol, which can be compared to the value of 12.84 kcal/mol predicted by CCSD(T). This large variation underscores the importance of benchmarking against accurate WF methods. A performance comparison of all of the density functionals used in this study reveals that the M06-2X-D3 (a meta-hybrid GGA), CAM-B3LYP-D3 (a range-separated hybrid), and B2GP-PLYP-D3 (a double hybrid) perform the best, with average errors of about 1.50-1.60 kcal/mol compared to CCSD(T). We also compared the performance of the WF methods that are more scalable than CCSD(T), finding that DLPNO-CCSD(T) and phaseless AFQMC with a DFT trial wave function exhibit average errors of 1.38 and 1.74 kcal/mol, respectively.

9.
J Chem Theory Comput ; 19(18): 6208-6225, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37655473

RESUMEN

Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.

10.
Sci Rep ; 13(1): 11674, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468518

RESUMEN

Coralsnakes of the genus Micrurus are a diverse group of venomous snakes ranging from the southern United States to southern South America. Much uncertainty remains over the genus diversity, and understanding Micrurus systematics is of medical importance. In particular, the widespread Micrurus nigrocinctus spans from Mexico throughout Central America and into Colombia, with a number of described subspecies. This study provides new insights into the phylogenetic relationships within M. nigrocinctus by examining sequence data from a broad sampling of specimens from Mexico, Guatemala, Honduras, Nicaragua, Costa Rica, and Panama. The recovered phylogenetic relationships suggest that M. nigrocinctus is a species complex originating in the Pliocene and composed of at least three distinct species-level lineages. In addition, recovery of highly divergent clades supports the elevation of some currently recognized subspecies to the full species rank while others may require synonymization.


Asunto(s)
Ponzoñas , Estados Unidos , Filogenia , América Central , Panamá , México
11.
J Chem Phys ; 158(14): 140901, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061483

RESUMEN

Approximate solutions to the ab initio electronic structure problem have been a focus of theoretical and computational chemistry research for much of the past century, with the goal of predicting relevant energy differences to within "chemical accuracy" (1 kcal/mol). For small organic molecules, or in general, for weakly correlated main group chemistry, a hierarchy of single-reference wave function methods has been rigorously established, spanning perturbation theory and the coupled cluster (CC) formalism. For these systems, CC with singles, doubles, and perturbative triples is known to achieve chemical accuracy, albeit at O(N7) computational cost. In addition, a hierarchy of density functional approximations of increasing formal sophistication, known as Jacob's ladder, has been shown to systematically reduce average errors over large datasets representing weakly correlated chemistry. However, the accuracy of such computational models is less clear in the increasingly important frontiers of chemical space including transition metals and f-block compounds, in which strong correlation can play an important role in reactivity. A stochastic method, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC), has been shown to be capable of producing chemically accurate predictions even for challenging molecular systems beyond the main group, with relatively low O(N3 - N4) cost and near-perfect parallel efficiency. Herein, we present our perspectives on the past, present, and future of the ph-AFQMC method. We focus on its potential in transition metal quantum chemistry to be a highly accurate, systematically improvable method that can reliably probe strongly correlated systems in biology and chemical catalysis and provide reference thermochemical values (for future development of density functionals or interatomic potentials) when experiments are either noisy or absent. Finally, we discuss the present limitations of the method and where we expect near-term development to be most fruitful.

12.
Nat Chem ; 15(1): 101-109, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216892

RESUMEN

State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.


Asunto(s)
Neoplasias del Colon , Luz , Humanos , Molécula de Adhesión Celular Epitelial , Catálisis
13.
J Chem Theory Comput ; 18(6): 3447-3459, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35507769

RESUMEN

Phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) has recently emerged as a promising method for the production of benchmark-level simulations of medium- to large-sized molecules because of its accuracy and favorable polynomial scaling with system size. Unfortunately, the memory footprints of standard energy evaluation algorithms are nontrivial, which can significantly impact timings on graphical processing units (GPUs) where memory is limited. Previous attempts to reduce scaling by taking advantage of the low-rank structure of the Coulombic integrals have been successful but exhibit high prefactors, making their utility limited to very large systems. Here we present a complementary cubic-scaling route to reduce memory and computational scaling based on the low rank of the Coulombic interactions between localized orbitals, focusing on the application to ph-AFQMC. We show that the error due to this approximation, which we term localized-orbital AFQMC (LO-AFQMC), is systematic and controllable via a single variable and that the method is computationally favorable even for small systems. We present results demonstrating robust retention of accuracy versus both experiment and full ph-AFQMC for a variety of test cases chosen for their potential difficulty for localized-orbital-based methods, including the singlet-triplet gaps of the polyacenes benzene through pentacene, the heats of formation for a set of Platonic hydrocarbon cages, and the total energy of ferrocene, Fe(Cp)2. Finally, we reproduce our previous result for the gas-phase ionization energy of Ni(Cp)2, agreeing with full ph-AFQMC to within statistical error while using less than 1/15th of the computer time.

14.
J Chem Theory Comput ; 18(5): 2845-2862, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35377642

RESUMEN

The accurate ab initio prediction of ionization energies is essential to understanding the electrochemistry of transition metal complexes in both materials science and biological applications. However, such predictions have been complicated by the scarcity of gas phase experimental data, the relatively large size of the relevant molecules, and the presence of strong electron correlation effects. In this work, we apply all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing multideterminant trial wave functions to six metallocene complexes to compare the computed adiabatic and vertical ionization energies with experimental results. We find that ph-AFQMC yields mean absolute errors (MAEs) of 1.69 ± 1.02 kcal/mol for the adiabatic energies and 2.85 ± 1.13 kcal/mol for the vertical energies. We also carry out density functional theory (DFT) calculations using a variety of functionals, which yields MAEs of 3.62-6.98 kcal/mol and 3.31-9.88 kcal/mol, as well as one variant of localized coupled cluster calculations (DLPNO-CCSD(T0) with moderate PNO cutoffs), which has MAEs of 4.96 and 6.08 kcal/mol, respectively. We also test the reliability of DLPNO-CCSD(T0) and DFT on acetylacetonate (acac) complexes for adiabatic energies measured in the same manner experimentally, and we find higher MAEs, ranging from 4.56 to 10.99 kcal/mol (with a different ordering) for DFT and 6.97 kcal/mol for DLPNO-CCSD(T0). Finally, by utilizing experimental solvation energies, we show that accurate reduction potentials in solution for the metallocene series can be obtained from the AFQMC gas phase results.

15.
Opt Lett ; 47(5): 1133-1136, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230309

RESUMEN

We demonstrate a reconfigurable microwave photonic (MWP) filter using a quantum dash (QDash) mode-locked laser (MLL) that can generate an optical frequency comb (OFC) with ∼50 comb lines and a free spectral range of 25 GHz. Thanks to the large number of comb lines, the MWP filter responses can be easily programmed by tailoring the OFC spectrum. We implement MWP filter responses with Gaussian, sinc, flat-top, and multiple peaks, as well as demonstrate that tuning of the central frequency. We achieve a minimum 3 dB bandwidth of ∼100 MHz for a sinc-shaped MWP filter, while the maximum out-of-band rejection can be up to ∼30 dB with Gaussian apodization. Our results show that the QDash-MLL is a promising OFC source for developing integrated and reconfigurable MWP filters.

16.
Sci Rep ; 11(1): 22878, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819556

RESUMEN

We present a compact, fibre-coupled single photon source using gradient-index (GRIN) lenses and an InAsP semiconductor quantum dot embedded within an InP photonic nanowire waveguide. A GRIN lens assembly is used to collect photons close to the tip of the nanowire, coupling the light immediately into a single mode optical fibre. The system provides a stable, high brightness source of fibre-coupled single photons. Using pulsed excitation, we demonstrate on-demand operation with a single photon purity of 98.5% when exciting at saturation in a device with a source-fibre collection efficiency of 35% and an overall single photon collection efficiency of 10%. We also demonstrate "plug and play" operation using room temperature photoluminescence from the InP nanowire for room temperature alignment.

17.
PLoS One ; 16(3): e0246829, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661928

RESUMEN

We examine, for the first time, biogeographic patterns in a series of tropical montane coastal systems in northern South America. We use amphibians and reptiles, which constitute the most critical communities based upon the prevalence of endemic taxa, to assess the region's biodiversity. The montane coastal system spans an east-west distance of 925 km. It includes peaks ranging from 549 m to 2765 m above sea level and encompasses the montane complexes of northern Venezuela (including Isla de Margarita), an outlier at Santa Marta (Colombia), and ranges on the islands Trinidad and Tobago. The area supports 14 family level amphibian clades and 23 family level reptile clades. Fieldwork, museum specimen surveys, and a literature review suggest that biodiversity decreases at higher elevations. Here we examine the biogeographic patterns in the region to assess the role of the montane systems as possible refugia. We also look at the possible island and sky island effects using data from altitudes >200 m. At lower elevations, we tabulated 294 species, comprising 112 amphibians and 182 reptiles. About 45% of these taxa are endemic or exclusive to different sub-regions. At mid-elevation montane cloud forests, we find a much-reduced biodiversity with a total of 125 species (66 amphibians and 59 reptiles) exclusive or restricted to the region, and few species shared between systems. We find that biogeographical patterns follow a natural topographic disposition above 200 m in elevations. At the lower elevation cut off, there are 118 species (26 amphibians and 92 reptiles) shared among two or more of the studied mountain systems, suggesting a common origin and dispersal events, despite what seem to be topographic barriers. Biogeographical relationships support a topographic disposition of the region with close associations between the islands of Trinidad and Tobago, the Paria Range and the Turimiquire Massif, and close associations between the Sierra Nevada de Santa Marta and the Sierra de San Luis. Overall, the biogeographic relationships between amphibians and reptiles are similar. Species diversity in the eastern Caribbean region is less rich than in the west. This study includes the first herpetological surveys at the two easternmost mountains (Cerro La Cerbatana and Campeare) belonging to the Paria Range biogeographic unit, and aims to contribute to a better understanding of the rich biodiversity of the region.


Asunto(s)
Anfibios , Biodiversidad , Geografía , Reptiles , Altitud , Animales , Bosques , Filogenia , América del Sur
18.
J Am Chem Soc ; 142(47): 19917-19925, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33174728

RESUMEN

Triplet-triplet annihilation upconversion (TTA-UC) is an unconventional photophysical process that yields high-energy photons from low-energy incident light and offers pathways for innovation across many technologies, including solar energy harvesting, photochemistry, and optogenetics. Within aromatic organic chromophores, TTA-UC is achieved through several consecutive energy conversion events that ultimately fuse two triplet excitons into a singlet exciton. In chromophores where the singlet exciton is roughly isoergic with two triplet excitons, the limiting step is the triplet-triplet annihilation pathway, where the kinetics and yield depend sensitively on the energies of the lowest singlet and triplet excited states. Herein we report up to 40-fold improvements in upconversion quantum yields using molecular engineering to selectively tailor the relative energies of the lowest singlet and triplet excited states, enhancing the yield of triplet-triplet annihilation and promoting radiative decay of the resulting singlet exciton. Using this general and effective strategy, we obtain upconversion yields with red emission that are among the highest reported, with remarkable chemical stability under ambient conditions.

19.
Molecules ; 25(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987656

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by a loss of dopaminergic neurons, leading to bradykinesia, rigidity, tremor at rest, and postural instability, as well as non-motor symptoms such as olfactory impairment, pain, autonomic dysfunction, impaired sleep, fatigue, and behavioral changes. The pathogenesis of PD is believed to involve oxidative stress, disruption to mitochondria, alterations to the protein α-synuclein, and neuroinflammatory processes. There is currently no cure for the disease. Polyphenols are secondary metabolites of plants, which have shown benefit in several experimental models of PD. Intake of polyphenols through diet is also associated with lower PD risk in humans. In this review, we provide an overview of the pathology of PD and the data supporting the potential neuroprotective capacity of increased polyphenols in the diet. Evidence suggests that the intake of dietary polyphenols may inhibit neurodegeneration and the progression of PD. Polyphenols appear to have a positive effect on the gut microbiome, which may decrease inflammation that contributes to the disease. Therefore, a diet rich in polyphenols may decrease the symptoms and increase quality of life in PD patients.


Asunto(s)
Neuroprotección , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson , Polifenoles/uso terapéutico , Calidad de Vida , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Enfermedad de Parkinson/dietoterapia , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología
20.
J Chem Theory Comput ; 16(5): 3041-3054, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32293882

RESUMEN

Transition-metal complexes are ubiquitous in biology and chemical catalysis, yet they remain difficult to accurately describe with ab initio methods because of the presence of a large degree of dynamic electron correlation, and, in some cases, strong static correlation which results from a manifold of low-lying states. Progress has been hindered by a scarcity of high-quality gas-phase experimental data, while exact ab initio predictions are usually computationally unaffordable because of the large size of the relevant complexes. In this work, we present a data set of 34 tetrahedral, square planar, and octahedral 3d metal-containing complexes with gas-phase ligand-dissociation energies that have reported uncertainties of ≤2 kcal/mol. We perform all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) calculations utilizing multideterminant trial wave functions selected by a black box procedure. We compare the results with those from the density functional theory (DFT) with the B3LYP, B97, M06, PBE0, ωB97X-V, and DSD-PBEP86/2013 functionals and a localized orbital variant of the coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)). We find mean averaged errors of 1.07 ± 0.27 kcal/mol for our most sophisticated ph-AFQMC approach versus 2.81 kcal/mol for DLPNO-CCSD(T) and 1.49-3.78 kcal/mol for DFT. We find maximum errors of 2.96 ± 1.71 kcal/mol for our best ph-AFQMC method versus 9.15 kcal/mol for DLPNO-CCSD(T) and 5.98-13.69 kcal/mol for DFT. The reasonable performance of a number of DFT functionals is in stark contrast to the much poorer accuracy previously demonstrated for diatomic species, suggesting a moderation in electron correlation because of ligand coordination in most cases. However, the unpredictably large errors for a small subset of cases with both DFT and DLPNO-CCSD(T) methods leave cause for concern, especially in light of the unreliability of common multireference indicators. In contrast, the robust and, in principle, systematically improvable results of ph-AFQMC for these realistic complexes establish the method as a useful tool for elucidating the electronic structure of transition-metal-containing complexes and predicting their gas-phase properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...