Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22174, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092880

RESUMEN

The liver is a vital organ with numerous functions, including metabolic functions, detoxification, and the synthesis of secretory proteins. The increasing prevalence of liver diseases requires the development of effective treatments, models, and regenerative approaches. The field of liver tissue engineering represents a significant advance in overcoming these challenges. In this study, 3D biohybrid constructs were created by combining hepatocyte-like cells (HLCs) derived from patient-specific footprint-free human induced pluripotent stem cells (hiPSCs) and 3D melt-electrospun poly-ε-caprolactone (PCL) scaffolds. First, a differentiation procedure was established to obtain autologous HCLs from hiPSCs reprogrammed from renal epithelial cells using self-replicating mRNA. The obtained cells expressed hepatocyte-specific markers and exhibited important hepatocyte functions, such as albumin synthesis, cytochrome P450 activity, glycogen storage, and indocyanine green metabolism. Biocompatible PCL scaffolds were fabricated by melt-electrospinning and seeded with pre-differentiated hepatoblasts, which uniformly attached to the fibers of the scaffolds and successfully matured into HLCs. The use of patient-specific, footprint-free hiPSC-derived HLCs represents a promising cell source for personalized liver regeneration strategies. In combination with biocompatible 3D scaffolds, this innovative approach has a broader range of applications spanning liver tissue engineering, drug testing and discovery, and disease modeling.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Hígado , Hepatocitos/metabolismo , Diferenciación Celular , Poliésteres/metabolismo
2.
Mol Ther Nucleic Acids ; 33: 642-654, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650117

RESUMEN

Loss of elastin due to aging, disease, or injury can lead to impaired tissue function. In this study, de novo tropoelastin (TE) synthesis is investigated in vitro and in vivo using different TE-encoding synthetic mRNA variants after codon optimization and nucleotide modification. Codon optimization shows a strong effect on protein synthesis without affecting cell viability in vitro, whereas nucleotide modifications strongly modulate translation and reduce cell toxicity. Selected TE mRNA variants (3, 10, and 30 µg) are then analyzed in vivo in porcine skin after intradermal application. Administration of 30 µg of native TE mRNA with a me1 Ψ modification or 10 and 30 µg of unmodified codon-optimized TE mRNA is required to increase TE protein expression in vivo. In contrast, just 3 µg of a codon-optimized TE mRNA variant with the me1 Ψ modification is able to increase protein expression. Furthermore, skin toxicity is investigated in vitro by injecting 30 µg of mRNA of selected TE mRNA variants into a human full-thickness skin model, and no toxic effects are observed. Thereby, for the first time, an increased dermal TE synthesis by exogenous administration of synthetic mRNA is demonstrated in vivo. Codon optimization of a synthetic mRNA can significantly increase protein expression and therapeutic outcome.

3.
Cells ; 12(9)2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37174617

RESUMEN

Cardiovascular diseases are the leading cause of death globally. Vascular implants, such as stents, are required to treat arterial stenosis or dilatation. The development of innovative stent materials and coatings, as well as novel preclinical testing strategies, is needed to improve the bio- and hemocompatibility of current stents. In this study, a blood vessel-like polydimethylsiloxane (PDMS) model was established to analyze the interaction of an endothelium with vascular implants, as well as blood-derived cells, in vitro. Using footprint-free human induced pluripotent stem cells (hiPSCs) and subsequent differentiation, functional endothelial cells (ECs) expressing specific markers were generated and used to endothelialize an artificial PDMS lumen. The established model was used to demonstrate the interaction of the created endothelium with blood-derived immune cells, which also allowed for real-time imaging. In addition, a stent was inserted into the endothelialized lumen to analyze the surface endothelialization of stents. In the future, this blood vessel-like model could serve as an in vitro platform to test the influence of vascular implants and coatings on endothelialization and to analyze the interaction of the endothelium with blood cell components.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Humanos , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Endotelio , Stents , Diferenciación Celular
4.
Adv Drug Deliv Rev ; 179: 114007, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34710530

RESUMEN

In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.


Asunto(s)
Sistemas de Liberación de Medicamentos , ARN Mensajero/administración & dosificación , Regeneración , Medicina Regenerativa/tendencias , Animales , Vacunas contra la COVID-19/administración & dosificación , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , ARN Mensajero/inmunología
5.
ALTEX ; 38(3): 442-450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33497462

RESUMEN

The generation of autologous human induced pluripotent stem cells (hiPSCs) from a patient's somatic cells and the sub­sequent differentiation of these cells into desired cell types offer innovative treatment options for tissue regeneration. The hiPSCs obtained are usually implanted in immunodeficient mice, and teratoma formation is analyzed after 4 to 6 weeks to assess the cells' pluripotency. In this study, an alternative in vivo model based on chicken egg chorioallantoic membrane (CAM) was established to analyze the pluripotency of newly created hiPSCs. 0.5, 1, 2, 4 x 106 hiPSCs gen­erated from urine-derived renal epithelial cells were seeded on CAM and incubated for 9 days. Teratoma formation was detected in 70% of eggs inoculated with 2 x 106 hiPSCs and in 100% of eggs inoculated with 4 x 106 hiPSCs. All teratomas exhibited vascular structures. The robustness of the CAM model was confirmed using two additional hiPSC lines derived from human fibroblasts (NuFFs) or jaw periosteal cells. The presence of all three germ layers within the teratomas was successfully verified by histochemical and immunofluorescence staining and gene expression analysis of germ layer-specific markers. Urine-derived renal epithelial cells were used as negative control and showed no teratoma formation. The CAM-based in vivo model provides an optimal in vivo test environment for the pluripotency evaluation of newly generated hiPSC lines. This simple, fast, inexpensive and reproducible method reduces the suffering of animals and thus implements the principles of the 3Rs (replacement, reduction, and refinement).


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Fibroblastos , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...