Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Hum Genet ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090236

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. Accurate cancer risk assessment approaches could increase rates of early CRC diagnosis, improve health outcomes for patients and reduce pressure on diagnostic services. The faecal immunochemical test (FIT) for blood in stool is widely used in primary care to identify symptomatic patients with likely CRC. However, there is a 6-16% noncompliance rate with FIT in clinic and ~90% of patients over the symptomatic 10 µg/g test threshold do not have CRC. A polygenic risk score (PRS) quantifies an individual's genetic risk of a condition based on many common variants. Existing PRS for CRC have so far been used to stratify asymptomatic populations. We conducted a retrospective cohort study of 50,387 UK Biobank participants with a CRC symptom in their primary care record at age 40+. A PRS based on 201 variants, 5 genetic principal components and 22 other risk factors and markers for CRC were assessed for association with CRC diagnosis within 2 years of first symptom presentation using logistic regression. Associated variables were included in an integrated risk model and trained in 80% of the cohort to predict CRC diagnosis within 2 years. An integrated risk model combining PRS, age, sex, and patient-reported symptoms was predictive of CRC development in a testing cohort (receiver operating characteristic area under the curve, ROCAUC: 0.76, 95% confidence interval: 0.71-0.81). This model has the potential to improve early diagnosis of CRC, particularly in cases of patient noncompliance with FIT.

2.
Genome Med ; 16(1): 85, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956711

RESUMEN

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Asunto(s)
Envejecimiento , Metilación de ADN , Longevidad , Humanos , Animales , Metilación de ADN/efectos de los fármacos , Longevidad/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Descubrimiento de Drogas/métodos , Senescencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Drosophila , Células Cultivadas , Sirolimus/farmacología
3.
JMIR Serious Games ; 12: e51508, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669680

RESUMEN

BACKGROUND: Finding enjoyable and effective long-term approaches to rehabilitation for improving the upper limb (UL) function of people with multiple sclerosis (MS) is challenging. Using virtual reality (VR) could be a solution to this challenge; however, there is a lack of reporting on the views of people with MS and clinicians on VR-based approaches and recommendations for games for rehabilitation. OBJECTIVE: This study aims to identify common UL problems and their related current therapeutic approaches for people with MS, and to explore the opinions of people with MS and specialist clinicians on VR and obtain suggestions for the development and design of VR games. METHODS: Separate focus groups were conducted with people with MS, recruited through the MS Society UK's research network, and clinicians, recruited through the MS Trust Therapists in MS network. A total of 10 people with MS (2 focus groups) and 8 clinicians (5 physiotherapists, 2 occupational therapists, and 1 MS nurse in 2 focus groups) were involved. The focus groups were recorded and transcriptions were analyzed using theme-based content analysis. RESULTS: People with MS commonly reported that their UL problems interfered with activities of daily living and resulted in the loss of meaningful hobbies such as writing. Many people with MS neglected UL exercise and found strategies for adapting to the UL impairments. Similarly, clinicians stated UL rehabilitation was neglected within their service and that it was challenging to find interesting treatment strategies. VR was suggested by both participant groups as a solution, as it was convenient for people with MS to access and it could provide a more engaging and disguised approach to exercise. There were shared concerns with cybersickness and disengagement with using VR approaches. Both groups agreed games should be meaningful and adaptable for users but suggested different VR activities, with clinicians suggesting games directly reflecting activities of daily living and people with MS suggesting more abstract activities. CONCLUSIONS: VR was well received by both people with MS and clinicians for UL rehabilitation. Recommendations were made for the development of VR rehabilitation games which are personalized and customizable for the varying abilities of people with MS.

4.
Front Genet ; 15: 1242636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633407

RESUMEN

Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies, however it can also result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier to reduce incidence of aGVHD by improving donor selection. Genome-wide DNA methylation was assessed in a discovery cohort of 288 HCT donors selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD. We applied a machine learning algorithm to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n = 288) selected using the same criteria as the discovery cohort. Attempts to validate the classifier failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use.

5.
Front Sociol ; 9: 1334633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414508

RESUMEN

This article seeks to understand the first-hand experiences of people with sickle cell, a recessively inherited blood disorder, who were identified as clinically extremely vulnerable during the COVID-19 pandemic. Part of a larger sequential mixed-methods study, this article uses a selective sample of eight qualitative semi-structured interviews, which were analysed using interpretative phenomenological analysis (IPA). The first stage of IPA focused on practical concerns participants had correlated to understanding shielding and their feelings about being identified as clinically extremely vulnerable. In a secondary stage of analysis, we examined the emotions that it brought forth and the foundations of those based on discriminations. This article adds to our theoretical understanding of embodiment and temporality with respect to chronicity and early ageing. It explains how people with sickle cell disorders have an embodied ethics of crisis and expertise. It also elucidates how people's experiences during the pandemic cannot be seen in void but illustrates ableism, racism, and ageism in society writ large.

6.
G3 (Bethesda) ; 14(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38113034

RESUMEN

How genetic and phenotypic variation are maintained has long been one of the fundamental questions in population and quantitative genetics. A variety of factors have been implicated to explain the maintenance of genetic variation in some contexts (e.g. balancing selection), but the potential role of epigenetic regulation to influence population dynamics has been understudied. It is well recognized that epigenetic regulation, including histone methylation, small RNA expression, and DNA methylation, helps to define differences between cell types and facilitate phenotypic plasticity. In recent years, empirical studies have shown the potential for epigenetic regulation to also be heritable for at least a few generations without selection, raising the possibility that differences in epigenetic regulation can act alongside genetic variation to shape evolutionary trajectories. Heritable differences in epigenetic regulation that arise spontaneously are termed "epimutations." Epimutations differ from genetic mutations in 2 key ways-they occur at a higher rate and the loci at which they occur often revert back to their original state within a few generations. Here, we present an extension of the standard population genetic model with selection to incorporate epigenetic variation arising via epimutation. Our model assumes a diploid, sexually reproducing population with random mating. In addition to spontaneous genetic mutation, we included parameters for spontaneous epimutation and back-epimutation, allowing for 4 potential epialleles at a single locus (2 genetic alleles, each with 2 epigenetic states), each of which affect fitness. We then analyzed the conditions under which stable epialleles were maintained. Our results show that highly reversible epialleles can be maintained in long-term equilibrium under neutral conditions in a manner that depends on the epimutation and back-epimutation rates, which we term epimutation-back-epimutation equilibrium. On the other hand, epialleles that compensate for deleterious mutations cause deviations from the expectations of mutation-selection balance by a simple factor that depends on the epimutation and back-epimutation rates. We also numerically analyze several sets of fitness parameters for which large deviations from mutation-selection balance occur. Together, these results demonstrate that transient epigenetic regulation may be an important factor in the maintenance of both epigenetic and genetic variation in populations.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Mutación , Alelos , Variación Genética
7.
Endocr Rev ; 45(3): 343-350, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123518

RESUMEN

Midgut neuroendocrine neoplasms (NENs) are one of the most common subtypes of NEN, and their incidence is rising globally. Despite being the most frequently diagnosed malignancy of the small intestine, little is known about their underlying molecular biology. Their unusually low mutational burden compared to other solid tumors and the unexplained occurrence of multifocal tumors makes the molecular biology of midgut NENs a particularly fascinating field of research. This review provides an overview of recent advances in the understanding of the interplay of the genetic, epigenetic, and transcriptomic landscape in the development of midgut NENs, a topic that is critical to understanding their biology and improving treatment options and outcomes for patients.


Asunto(s)
Neoplasias Intestinales , Tumores Neuroendocrinos , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Animales , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...