Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Dev ; 19(1): 4, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698415

RESUMEN

BACKGROUND: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS: Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS: Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS: Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.


Asunto(s)
Evolución Biológica , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Transducción de Señal/fisiología
2.
Environ Microbiome ; 19(1): 5, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225668

RESUMEN

Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.

3.
ISME Commun ; 3(1): 114, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865659

RESUMEN

Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.

4.
Sci Total Environ ; 904: 166658, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659522

RESUMEN

Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 µg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 µg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.


Asunto(s)
Antozoos , Microbiota , Animales , Cobre/toxicidad , ARN Ribosómico 16S/genética , Teorema de Bayes , Australia
5.
Environ Microbiol ; 25(12): 3207-3224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37732569

RESUMEN

The sponge microbiome underpins host function through provision and recycling of essential nutrients in a nutrient poor environment. Genomic data suggest that carbohydrate degradation, carbon fixation, nitrogen metabolism, sulphur metabolism and supplementation of B-vitamins are central microbial functions. However, validation beyond the genomic potential of sponge symbiont pathways is rarely explored. To evaluate metagenomic predictions, we sequenced the metagenomes and metatranscriptomes of three common coral reef sponges: Ircinia ramosa, Ircinia microconulosa and Phyllospongia foliascens. Multiple carbohydrate active enzymes were expressed by Poribacteria, Bacteroidota and Cyanobacteria symbionts, suggesting these lineages have a central role in assimilating dissolved organic matter. Expression of entire pathways for carbon fixation and multiple sulphur compound transformations were observed in all sponges. Gene expression for anaerobic nitrogen metabolism (denitrification and nitrate reduction) were more common than aerobic metabolism (nitrification), where only the I. ramosa microbiome expressed the nitrification pathway. Finally, while expression of the biosynthetic pathways for B-vitamins was common, the expression of additional transporter genes was far more limited. Overall, we highlight consistencies and disparities between metagenomic and metatranscriptomic results when inferring microbial activity, while uncovering new microbial taxa that contribute to the health of their sponge host via nutrient exchange.


Asunto(s)
Cianobacterias , Microbiota , Poríferos , Animales , Filogenia , Cianobacterias/genética , Microbiota/genética , Vitaminas/metabolismo , Carbohidratos , Simbiosis
6.
Mol Ecol ; 32(20): 5645-5660, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37724851

RESUMEN

Microbes play a critical role in the development and health of marine invertebrates, though microbial dynamics across life stages and host generations remain poorly understood in most reef species, especially in the context of climate change. Here, we use a 4-year multigenerational experiment to explore microbe-host interactions under the Intergovernmental Panel on Climate Change (IPCC)-forecast climate scenarios in the rock-boring tropical urchin Echinometra sp. A. Adult urchins (F0 ) were exposed for 18 months to increased temperature and pCO2 levels predicted for years 2050 and 2100 under RCP 8.5, a period which encompassed spawning. After rearing F1 offspring for a further 2 years, spawning was induced, and F2 larvae were raised under current day and 2100 conditions. Cross-generational climate effects were also explored in the microbiome of F1 offspring through a transplant experiment. Using 16S rRNA gene sequence analysis, we determined that each life stage and generation was associated with a distinct microbiome, with higher microbial diversity observed in juveniles compared to larval stages. Although life-stage specificity was conserved under climate conditions projected for 2050 and 2100, we observed changes in the urchin microbial community structure within life stages. Furthermore, we detected a climate-mediated parental effect when juveniles were transplanted among climate treatments, with the parental climate treatment influencing the offspring microbiome. Our findings reveal a potential for cross-generational impacts of climate change on the microbiome of a tropical invertebrate species.

7.
ISME Commun ; 3(1): 53, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37311801

RESUMEN

Oceans are rapidly warming and acidifying in the context of climate change, threatening sensitive marine biota including coral reef sponges. Ocean warming (OW) and ocean acidification (OA) can impact host health and associated microbiome, but few studies have investigated these effects, which are generally studied in isolation, on a specific component of the holobiont. Here we present a comprehensive view of the consequences of simultaneous OW and OA for the tropical sponge Stylissa flabelliformis. We found no interactive effect on the host health or microbiome. Furthermore, OA (pH 7.6 versus pH 8.0) had no impact, while OW (31.5 °C versus 28.5 °C) caused tissue necrosis, as well as dysbiosis and shifts in microbial functions in healthy tissue of necrotic sponges. Major taxonomic shifts included a complete loss of archaea, reduced proportions of Gammaproteobacteria and elevated relative abundances of Alphaproteobacteria. OW weakened sponge-microbe interactions, with a reduced capacity for nutrient exchange and phagocytosis evasion, indicating lower representations of stable symbionts. The potential for microbially-driven nitrogen and sulphur cycling was reduced, as was amino acid metabolism. Crucially, the dysbiosis annihilated the potential for ammonia detoxification, possibly leading to accumulation of toxic ammonia, nutrient imbalance, and host tissue necrosis. Putative defence against reactive oxygen species was greater at 31.5 °C, perhaps as microorganisms capable of resisting temperature-driven oxidative stress were favoured. We conclude that healthy symbiosis in S. flabelliformis is unlikely to be disrupted by future OA but will be deeply impacted by temperatures predicted for 2100 under a "business-as-usual" carbon emission scenario.

8.
ISME J ; 17(8): 1208-1223, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188915

RESUMEN

Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.


Asunto(s)
Poríferos , Animales , Poríferos/microbiología , Taurina , Amoníaco , Carbono , Simbiosis , Filogenia
9.
Syst Appl Microbiol ; 46(4): 126426, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141831

RESUMEN

Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.


Asunto(s)
Proteínas Hedgehog , Simbiosis , Filogenia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , ARN Ribosómico 16S/genética , Bacterias
10.
Syst Appl Microbiol ; 46(2): 126401, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774720

RESUMEN

Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.


Asunto(s)
Bacterias , Microbiota , Filogenia , ARN Ribosómico 16S/genética , Metagenoma , Compuestos de Azufre/metabolismo
11.
Environ Microbiol ; 25(3): 646-660, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36480164

RESUMEN

Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing >90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe-host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host-microbe interactions and provide a basis for in-depth physiological experiments.


Asunto(s)
Microbiota , Poríferos , Animales , Poríferos/microbiología , Filogenia , Archaea/metabolismo , Simbiosis/fisiología
12.
Sci Adv ; 8(38): eabq0304, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149959

RESUMEN

The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine ß-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/genética , Arrecifes de Coral , Cistationina betasintasa/genética , Cisteína/genética , Dinoflagelados/genética , Genoma , Mamíferos/genética , Simbiosis/genética
13.
Microbiome ; 10(1): 22, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105377

RESUMEN

BACKGROUND: Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. RESULTS: Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3'-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. CONCLUSIONS: This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. Video abstract.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida
14.
ISME Commun ; 2(1): 90, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37938734

RESUMEN

Most marine sponge species harbour distinct communities of microorganisms which contribute to various aspects of their host's health and physiology. In addition to their key roles in nutrient transformations and chemical defence, these symbiotic microbes can shape sponge phenotype by mediating important developmental stages and influencing the environmental tolerance of the host. However, the characterisation of each microbial taxon throughout a sponge's life cycle remains challenging, with several sponge species hosting up to 3000 distinct microbial species. Ianthella basta, an abundant broadcast spawning species in the Indo-Pacific, is an emerging model for sponge symbiosis research as it harbours only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium. Here, we successfully spawned Ianthella basta, characterised its mode of reproduction, and used 16S rRNA gene amplicon sequencing, fluorescence in situ hybridisation, and transmission electron microscopy to characterise the microbial community throughout its life cycle. We confirmed I. basta as being gonochoric and showed that the three dominant symbionts, which together make up >90% of the microbiome according to 16S rRNA gene abundance, are vertically transmitted from mother to offspring by a unique method involving encapsulation in the peri-oocytic space, suggesting an obligate relationship between these microbes and their host.

15.
FEMS Microbes ; 3: xtac002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37332502

RESUMEN

Current methods to characterize microbial communities generally employ sequencing of the 16S rRNA gene (<500 bp) with high accuracy (∼99%) but limited phylogenetic resolution. However, long-read sequencing now allows for the profiling of near-full-length ribosomal operons (16S-ITS-23S rRNA genes) on platforms such as the Oxford Nanopore MinION. Here, we describe an rRNA operon database with >300 ,000 entries, representing >10 ,000 prokaryotic species and ∼ 150, 000 strains. Additionally, BLAST parameters were identified for strain-level resolution using in silico mutated, mock rRNA operon sequences (70-95% identity) from four bacterial phyla and two members of the Euryarchaeota, mimicking MinION reads. MegaBLAST settings were determined that required <3 s per read on a Mac Mini with strain-level resolution for sequences with >84% identity. These settings were tested on rRNA operon libraries from the human respiratory tract, farm/forest soils and marine sponges ( n = 1, 322, 818 reads for all sample sets). Most rRNA operon reads in this data set yielded best BLAST hits (95 ± 8%). However, only 38-82% of library reads were compatible with strain-level resolution, reflecting the dominance of human/biomedical-associated prokaryotic entries in the database. Since the MinION and the Mac Mini are both portable, this study demonstrates the possibility of rapid strain-level microbiome analysis in the field.

16.
Life (Basel) ; 11(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34833075

RESUMEN

Macroalgae play an intricate role in microbial-mediated coral reef degradation processes due to the release of dissolved nutrients. However, temporal variabilities of macroalgal surface biofilms and their implication on the wider reef system remain poorly characterized. Here, we study the microbial biofilm of the dominant reef macroalgae Sargassum over a period of one year at an inshore Great Barrier Reef site (Magnetic Island, Australia). Monthly sampling of the Sargassum biofilm links the temporal taxonomic and putative functional metabolic microbiome changes, examined using 16S rRNA gene amplicon and metagenomic sequencing, to the pronounced growth-reproduction-senescence cycle of the host. Overall, the macroalgal biofilm was dominated by the heterotrophic phyla Firmicutes (35% ± 5.9% SD) and Bacteroidetes (12% ± 0.6% SD); their relative abundance ratio shifted significantly along the annual growth-reproduction-senescence cycle of Sargassum. For example, Firmicutes were 1.7 to 3.9 times more abundant during host growth and reproduction cycles than Bacteroidetes. Both phyla varied in their carbohydrate degradation capabilities; hence, temporal fluctuations in the carbohydrate availability are potentially linked to the observed shift. Dominant heterotrophic macroalgal biofilm members, such as Firmicutes and Bacteroidetes, are implicated in exacerbating or ameliorating the release of dissolved nutrients into the ambient environment, though their contribution to microbial-mediated reef degradation processes remains to be determined.

17.
Ecology ; 102(12): e03536, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34514590

RESUMEN

Herbivory and nutrient availability are fundamental drivers of benthic community succession in shallow marine systems, including coral reefs. Despite the importance of early community succession for coral recruitment and recovery, studies characterizing the impact of top-down and bottom-up drivers on micro- and macrobenthic communities at scales relevant to coral recruitment are lacking. Here, a combination of tank and field experiments were used to assess the effects of herbivore exclusion and nutrient enrichment on micro- to macrobenthic community succession and subsequent coral recruitment success. Herbivore exclusion had the strongest effect on micro- and macrobenthic community succession, including a community shift toward copiotrophic and potentially opportunistic/pathogenic microorganisms, an increased cover of turf and macroalgae, and decreased cover of crustose coralline algae. Yet, when corals settled prior to the development of a macrobenthic community, rates of post-settlement survival increased when herbivores were excluded, benefiting from the predation refugia provided by cages during their vulnerable early post-settlement stage. Interestingly, survival on open tiles was negatively correlated with the relative abundance of the bacterial order Rhodobacterales, an opportunistic microbial group previously associated with stressed and diseased corals. Development of micro- and macrobenthic communities in the absence of herbivory, however, led to reduced coral settlement. In turn, there were no differences in post-settlement survival between open and caged treatments for corals settled on tiles with established benthic communities. As a result, open tiles experienced marginally higher recruitment rates, driven primarily by the higher initial number of settlers on open tiles compared to caged tiles. Overall, we reveal that the primary interaction driving coral recruitment is the positive effect of herbivory in creating crustose coralline algae (CCA)-dominated habitats, free of fleshy algae and associated opportunistic microbes, to enhance coral settlement. The negative direct and indirect impact of fish predation on newly settled corals was outweighed by the positive effect of herbivory on the initial rate of coral settlement. In turn, the addition of nutrients further altered benthic community succession in the absence of herbivory, reducing coral post-settlement survival. However, the overall impact of nutrients on coral recruitment dynamics was minor relative to herbivory.


Asunto(s)
Antozoos , Animales , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras , Nutrientes
18.
Dev Biol ; 478: 183-204, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216573

RESUMEN

The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (≈Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. To determine the function of BMP signaling during early development of the spiralian annelid Capitella teleta, we incubated embryos and larvae in BMP4 protein for different amounts of time. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, foregut, and ventral midline in a time-dependent manner. However, adding BMP did not block brain or VNC formation or majorly disrupt the D-V axis. We identified three key time windows of BMP activity. 1) BMP treatment around birth of the 3rd-quartet micromeres caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2) Treatment after the birth of micromere 4d induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3) Continuous BMP treatment from late cleavage (4d â€‹+ â€‹12 â€‹h) through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric ventral nerve cord, although the total amount of neural tissue was not greatly affected. Our results compared with those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue to one region of the D-V axis. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a non-axial organizing signal that was present in the last common ancestor of annelids and mollusks. Furthermore, in the last common ancestor of annelids, BMP signaling may have functioned in patterning ectodermal fates along the D-V axis in the trunk. Ultimately, studies on a wider range of spiralian taxa are needed to determine the role of BMP signaling during neural induction and neural patterning in the last common ancestor of this group. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Poliquetos/embriología , Poliquetos/metabolismo , Proteínas de Pez Cebra/farmacología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Proteínas Morfogenéticas Óseas/genética , Encéfalo/embriología , Sistema Digestivo/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Ojo/embriología , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Poliquetos/efectos de los fármacos , Poliquetos/crecimiento & desarrollo , Proteínas Recombinantes/farmacología , Transducción de Señal , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
19.
JAMA Netw Open ; 4(6): e2112852, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34100936

RESUMEN

Importance: Food insecurity is prevalent among racial/ethnic minority populations in the US. To date, few studies have examined the association between pre-COVID-19 experiences of food insecurity and COVID-19 infection rates through a race/ethnicity lens. Objective: To examine the associations of race/ethnicity and past experiences of food insecurity with COVID-19 infection rates and the interactions of race/ethnicity and food insecurity, while controlling for demographic, socioeconomic, risk exposure, and geographic confounders. Design, Setting, and Participants: This cross-sectional study examined the associations of race/ethnicity and food insecurity with cumulative COVID-19 infection rates in 3133 US counties, as of July 21 and December 14, 2020. Data were analyzed from November 2020 through March 2021. Exposures: Racial/ethnic minority groups who experienced food insecurity. Main Outcomes and Measures: The dependent variable was COVID-19 infections per 1000 residents. The independent variables of interest were race/ethnicity, food insecurity, and their interactions. Results: Among 3133 US counties, the mean (SD) racial/ethnic composition was 9.0% (14.3%) Black residents, 9.6% (13.8%) Hispanic residents, 2.3% (7.3%) American Indian or Alaska Native residents, 1.7% (3.2%) Asian American or Pacific Islander residents, and 76.1% (20.1%) White residents. The mean (SD) proportion of women was 49.9% (2.3%), and the mean (SD) proportion of individuals aged 65 years or older was 19.3% (4.7%). In these counties, large Black and Hispanic populations were associated with increased COVID-19 infection rates in July 2020. An increase of 1 SD in the percentage of Black and Hispanic residents in a county was associated with an increase in infection rates per 1000 residents of 2.99 (95% CI, 2.04 to 3.94; P < .001) and 2.91 (95% CI, 0.39 to 5.43; P = .02), respectively. By December, a large Black population was no longer associated with increased COVID-19 infection rates. However, a 1-SD increase in the percentage of Black residents in counties with high prevalence of food insecurity was associated with an increase in infections per 1000 residents of 0.90 (95% CI, 0.33 to 1.47; P = .003). Similarly, a 1-SD increase in the percentage of American Indian or Alaska Native residents in counties with high levels of food insecurity was associated with an increase in COVID-19 infections per 1000 residents of 0.57 (95% CI, 0.06 to 1.08; P = .03). By contrast, a 1-SD increase in Hispanic populations in a county remained independently associated with a 5.64 (95% CI, 3.54 to 7.75; P < .001) increase in infection rates per 1000 residents in December 2020 vs 2.91 in July 2020. Furthermore, while a 1-SD increase in the proportion of Asian American or Pacific Islander residents was associated with a decrease in infection rates per 1000 residents of -1.39 (95% CI, -2.29 to 0.49; P = .003), the interaction with food insecurity revealed a similar association (interaction coefficient, -1.48; 95% CI, -2.26 to -0.70; P < .001). Conclusions and Relevance: This study sheds light on the association of race/ethnicity and past experiences of food insecurity with COVID-19 infection rates in the United States. These findings suggest that the channels through which various racial/ethnic minority population concentrations were associated with COVID-19 infection rates were markedly different during the pandemic.


Asunto(s)
COVID-19/etiología , Etnicidad , Inseguridad Alimentaria , Disparidades en el Estado de Salud , Grupos Minoritarios , Grupos Raciales , Adulto , Negro o Afroamericano , Anciano , Asiático , COVID-19/etnología , Estudios Transversales , Femenino , Hispánicos o Latinos , Humanos , Masculino , Persona de Mediana Edad , Nativos de Hawái y Otras Islas del Pacífico , Pandemias , Prevalencia , SARS-CoV-2 , Estados Unidos , Población Blanca , Indio Americano o Nativo de Alaska
20.
Mol Ecol ; 30(15): 3768-3782, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34060182

RESUMEN

Marine invertebrates harbour a complex suite of bacterial and archaeal symbionts, a subset of which are probably linked to host health and homeostasis. Within a complex microbiome it can be difficult to tease apart beneficial or parasitic symbionts from nonessential commensal or transient microorganisms; however, one approach is to detect strong cophylogenetic patterns between microbial lineages and their respective hosts. We employed the Procrustean approach to cophylogeny (PACo) on 16S rRNA gene derived microbial community profiles paired with COI, 18S rRNA and ITS1 host phylogenies. Second, we undertook a network analysis to identify groups of microbes that were co-occurring within our host species. Across 12 coral, 10 octocoral and five sponge species, each host group and their core microbiota (50% prevalence within host species replicates) had a significant fit to the cophylogenetic model. Independent assessment of each microbial genus and family found that bacteria and archaea affiliated to Endozoicomonadaceae, Spirochaetaceae and Nitrosopumilaceae have the strongest cophylogenetic signals. Further, local Moran's I measure of spatial autocorrelation identified 14 ASVs, including Endozoicomonadaceae and Spirochaetaceae, whose distributions were significantly clustered by host phylogeny. Four co-occurring subnetworks were identified, each of which was dominant in a different host group. Endozoicomonadaceae and Spirochaetaceae ASVs were abundant among the subnetworks, particularly one subnetwork that was exclusively comprised of these two bacterial families and dominated the octocoral microbiota. Our results disentangle key microbial interactions that occur within complex microbiomes and reveal long-standing, essential microbial symbioses in coral reef invertebrates.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Antozoos/genética , Archaea/genética , Bacterias/genética , Humanos , Invertebrados , Filogenia , ARN Ribosómico 16S/genética , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...