RESUMEN
Ticks are obligate blood-feeding ectoparasites notorious for their role as vectors for various pathogens, posing health risks to pets, livestock, wildlife, and humans. Wildlife also notably serves as reservoir hosts for tick-borne pathogens and plays a pivotal role in the maintenance and dissemination of these pathogenic agents within ecosystems. This study investigated the diversity of ticks and pathogens in wildlife and their habitat by examining ticks collected at Khao Kheow Open Zoo, Chonburi Province, Thailand. Tick samples were collected for 1â¯year from March 2021 to March 2022 by vegetation dragging and direct sampling from wildlife. A total of 10,436 ticks or 449 tick pools (1-50 ticks per pool) underwent screening for pathogen presence through conventional PCR and DNA sequencing. Out of the 298 samples (66.37%) where bacteria and protozoa were detected, encompassing 8,144 ticks at all stages, 114 positive samples from the PCR screenings were specifically chosen for detailed nucleotide sequencing and comprehensive analysis. Four species of ticks were conclusively identified through the application of PCR, namely, Rhipicephalus microplus, Dermacentor auratus, Haemaphysalis lagrangei, and Haemaphysalis wellingtoni. The highest infection rate recorded was for Anaplasma spp. at 55.23% (248/449), followed by Babesia spp. and Theileria spp. at 29.62% (133/449) and 16.26% (73/449), respectively. Among bacteria identified, three Anaplasma genotypes were closely related to an unidentified Anaplasma spp., A. phagocytophilum, and A. bovis. Among protozoa, only an unidentified Babesia spp. was found, whereas two Theileria genotypes found were closely related to unidentified Theileria spp. and T. equi. Significantly, our findings revealed coinfection with Anaplasma spp., Theileria spp., and Babesia spp. While blood samples from wildlife were not specifically collected to assess infection in this study, the data on the presence of various pathogens in ticks observed can serve as valuable indicators to assess the health status of wildlife populations and to monitor disease dynamics. The findings could be valuable in developing programs for the treatment, prevention, and control of tick-borne illnesses in this area. However, additional research is required to determine the ticks' ability to transmit these pathogens and enhance the current understanding of the relationship among pathogens, ticks, and hosts.
RESUMEN
BACKGROUND: The endangered Formosan black bear (Ursus thibetanus formosanus) is the largest native carnivorous mammal in Taiwan. Diseases, poor management, illegal hunting, and habitat destruction are serious threats to the survival of bear populations. However, studies on the impact of diseases on bear populations are limited. Therefore, this study aimed to establish a database of the hematological and plasma profiles of free-ranging Formosan black bears and investigate the occurrence of ectoparasites, blood parasites, and vector-borne pathogens. METHODS: Formosan black bears were captured in Yushan National Park (YNP) and Daxueshan Forest Recreation Area (DSY) in Taiwan. Blood samples were collected from each bear for hematological analysis and plasma biochemistry using a hematology analyzer. Parasites and pathogens were detected using a thin blood smear with Wright-Giemsa staining and polymerase chain reaction (PCR) assay. Additionally, macroscopic ectoparasites were collected from bears to detect blood parasites and other pathogens. Moreover, the relationships between the bear variables (sex, age, and occurrence of parasites or pathogens), ectoparasites, and infectious agents were also analyzed. RESULTS: In all, 21 wild bears (14 in YNP and 7 in DSY) were captured and released during the satellite tracking studies. Hematological analysis and plasma biochemistry indicated significant differences in white blood cells (WBC), segments, creatine kinase (CK), and lactate dehydrogenase (LDH) levels between foot snare and culvert-captured bears. Additionally, there were significant differences in total plasma protein (TPP), creatinine, Ca2+, Mg2+, and K+ levels between male and female bears. Moreover, pathogen-infected bears had significantly higher erythrocyte sedimentation rate (ESR; 30 min and 1 h) and globulin levels than uninfected bears. In total, 240 ticks were collected from 13 bears, among which eight adult tick species were identified, including Haemaphysalis flava, Haemaphysalis hystricis, Amblyomma testudinarium, Ixodes ovatus, Dermacentor taiwanensis, Haemaphysalis longicornis, Ixodes acutitarsus, Amblyomma javanense, and nymphs belonging to Haemaphysalis spp. PCR revealed that 13 (61.90%) and 8 (38.10%) bears harbored Hepatozoon ursi and Babesia DNA, respectively. Among the ticks examined, 157 (65.41%) and 128 (53.33%) samples were positive for H. ursi and Babesia, respectively. CONCLUSIONS: To the best of our knowledge, this is the first study to establish a database of the hematological and plasma profiles of wild Formosan black bears and investigate ectoparasite infestation and Hepatozoon and Babesia spp. INFECTION: In conclusion, these findings may serve as a reference for monitoring the health and population of locally endangered bears.
Asunto(s)
Ursidae , Animales , Ursidae/parasitología , Ursidae/sangre , Masculino , Femenino , Taiwán/epidemiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/sangre , Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/sangre , Animales Salvajes/parasitologíaRESUMEN
Lipoptena insects are important ectoparasites of cervids and may affect humans that are incidentally bitten. The presence of zoonotic pathogen DNA, such as Anaplasma, and Bartonella, raises the importance of Lipoptena insects in veterinary and human medicine. Eld's deer (Rucervus eldii thamin), an endangered wild ruminant in Thailand, are bred and raised in the open zoo. The semi-wild zoo environment suggests ectoparasite infestation and potential risk for mechanical transmission of pathogens to visitors, zoo workers, or other animals. However, epidemiology knowledge of pathogens related to endangered wild ruminants in Thailand is limited. This study aims to determine the prevalence and diversity of Anaplasma and Bartonella in the L. fortisetosa collected from captive Eld's deer in Chon Buri, Thailand. Of the 91 Lipoptena DNA samples obtained, 42 (46.15%) and 25 (27.47%) were positive for Anaplasma and Bartonella by molecular detection, respectively. Further, 42 sequences of Anaplasma (4 nucleotide sequence types) showed 100% identity to those detected in other ruminants and blood-sucking ectoparasites. Twenty-five sequences of Bartonella (8 nucleotide sequence types) showed 97.35-99.11% identity to the novel Bartonella species from sika deer and keds in Japan. Phylogenetic trees revealed Anaplasma sequences were grouped with the clusters of A. bovis and other ruminant-related Anaplasma, while Bartonella sequences were clustered with the novel Bartonella species lineages C, D, and E, which originated from Japan. Interestingly, a new independent lineage of novel Bartonella species was found in obtained specimens. We report the first molecular detection of Anaplasma and Bartonella on L. fortisetosa, which could represent infectious status of captive Eld's deer in the zoo. Wild animals act as reservoirs for many pathogens, thus preventive measures in surrounding areas should be considered to prevent pathogen infection among animals or potential zoonotic infection among humans.
RESUMEN
Duck Tembusu virus (DTMUV) is an important flavivirus that can be transmitted to poultry via Aedes albopictus bites. Furthermore, humans residing in the DTMUV epidemic area display activated antiviral immune responses to local DTMUV isolates during the pathogenic invasion, thereby raising the primary concern that this flavivirus may be transmitted to humans via mosquito bites. Therefore, we identified the gene AALF004421, which is a homolog of the 34-kDa salivary protein (34 kDa) of Ae. albopictus and studied the salivary protein-mediated enhancement of DTMUV infection in Ae. albopictus salivary glands. We observed that double-stranded RNA-mediated silencing of the 34 kDa in mosquito salivary glands demonstrated that the silenced 34 kDa impaired DTMUV infectivity, similar to inhibition through serine protease. This impairment occurred as a consequence of triggering the innate immune response function of a macroglobulin complement-related factor (MCR). 34-kDa in the salivary gland which had similar activity as a serine protease, results in the abrogation of antimicrobial peptides production and strong enhance DTMUV replication and transmission. Although the function of the 34 kDa in Ae. albopictus is currently unknown; in the present study, we showed that it may have a major role in DTMUV infection in mosquito salivary glands through the suppression of the antiviral immune response in the earliest stages of infection. This finding provides the first identification of a prominently expressed 34 kDa protein in Ae. albopictus saliva that could serve as a target for controlling DTMUV replication in mosquito vectors.
Asunto(s)
Aedes , Infecciones por Flavivirus , Flavivirus , Enfermedades de las Aves de Corral , Humanos , Animales , Flavivirus/genética , Glándulas Salivales , Infecciones por Flavivirus/veterinaria , Inmunidad Innata , Antivirales , Proteínas y Péptidos Salivales , Serina Proteasas , PatosRESUMEN
Dermatophytes are the group of keratinophilic fungi that cause superficial cutaneous infection, which traditionally belong to the genera Trichophyton, Microsporum, and Epidermophyton. Dermatophyte infection is not only a threat to the health of small animals, but also an important zoonotic and public health issue because of the potential transmission from animals to humans. Rabbit dermatophytosis is often clinically identified; however, limited information was found in Asia. The aims of this study are to investigate the prevalence and to evaluate the risk factors of dermatophytosis in pet rabbits in Northern Taiwan. Between March 2016 and October 2018, dander samples of pet rabbits were collected for fungal infection examination by Wood's lamp, microscopic examination (KOH preparation), fungal culture, and PCR assay (molecular identification). Z test and Fisher's exact test were performed to evaluate the potential risk factors, and logistic regression analysis was then performed to build the model of risk factors related to dermatophyte infection. Of the collected 250 dander samples of pet rabbits, 29 (11.6%) samples were positive for dermatophytes by molecular identification. In those samples, 28 samples were identified as the T. mentagrophytes complex and 1 sample was identified as M. canis. Based on the results of the Firth's bias reduction logistic analyses, animal source (rabbits purchased from pet shops) and number of rearing rabbits (three rabbits or more) were shown as the main risks for dermatophyte infection in the pet rabbits in Taiwan. The results of the present study elucidate the prevalence of rabbit dermatophyte infection, pathogens, and risk factors in Taiwan, and provide an important reference for the prevention and control of rabbit dermatophytosis.
RESUMEN
Bartonella henselae is a slow-growing, Gram-negative bacterium that causes cat scratch disease in humans. A transstadial transmission of the bacteria from larvae to nymphs of Rhipicephalus sanguineus sensu lato (s.l.) ticks, suspected to be a potential vector of the bacteria, has been previously demonstrated. The present study aims to investigate transovarial transmission of B. henselae from R. sanguineus s.l. adults to their instars. Adult ticks (25 males and 25 females) were fed through an artificial feeding system on B. henselae-infected goat blood for 14 days, and 300 larvae derived from the experimentally B. henselae-infected females were fed on noninfected goat blood for 7 days. Nested PCR and culture were used to detect and isolate B. henselae in ticks and blood samples. Bartonella henselae DNA was detected in midguts, salivary glands, and carcasses of the semi-engorged adults and pooled tick feces (during feeding and post-feeding periods). After the oviposition period, B. henselae DNA was detected in salivary glands of females (33.3%), but not in pooled eggs or larvae derived from the infected females. However, B. henselae DNA was detected by nested PCR from the blood sample during larval feeding, while no viable B. henselae was isolated by culture. According to our findings, following infected blood meal, B. henselae could remain in the tick midguts, move to other tissues including salivary glands, and then be shed through tick feces with limited persistency. The presence of bacterial DNA in the blood during larval feeding shows the possibility of transovarial transmission of B. henselae in R. sanguineus s.l. ticks.
RESUMEN
Bartonella henselae is a fastidious intraerythrocytic, gram-negative bacteria that causes cat scratch disease in humans. Ixodes ricinus has been confirmed to be a competent vector of B. henselae, and some indirect evidences from clinical cases and epidemiological studies also suggested that some other tick species, including Rhipicephalus sanguineus, may transmit the bacteria. B. henselae has been detected in R. sanguineus but no experimental investigations have been performed to evaluate the vector competency of this tick species regarding B. henselae transmission. To this end, this work aimed to assess the transstadial transmission of B. henselae between larvae and nymphs of R. sanguineus as well as transmission by nymphs infected at the larval stage. Four hundred B. henselae negative larvae were fed with B. henselae-infected blood by using an artificial membrane feeding system. After five days of feeding, B. henselae was detected by PCR in 57.1% (8/14) of engorged larval pools, 66.7% (4/6) of semi-engorged larval pools, and 66.7% (2/3) of larval feces pools. After molting, B. henselae DNA was also detected in 10% (1/10) of nymph pools, but not in tick feces. After a pre-fed step of nymphs infected at the larval stage on non-infected blood meal, B. henselae was detected by PCR in blood sample from the feeder, but no Bartonella colonies could be obtained from culture. These findings showed that B. henselae could be transstadial transmitted from R. sanguineus larvae to nymphs, and also suggest that these nymphs may retransmitted the bacteria through the saliva during their blood meal. This is the first study that validated the artificial membrane feeding system for maintaining R. sanguineus tick colony. It shows the possibility of transstadial transmission of B. henselae from R. sanguineus larvae to nymphs.