Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 8798, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217461

RESUMEN

How inorganic phosphate (Pi) homeostasis is regulated in Drosophila is currently unknown. We here identify MFS2 as a key Pi transporter in fly renal (Malpighian) tubules. Consistent with its role in Pi excretion, we found that dietary Pi induces MFS2 expression. This results in the formation of Malpighian calcium-Pi stones, while RNAi-mediated knockdown of MFS2 increases blood (hemolymph) Pi and decreases formation of Malpighian tubule stones in flies cultured on high Pi medium. Conversely, microinjection of adults with the phosphaturic human hormone fibroblast growth factor 23 (FGF23) induces tubule expression of MFS2 and decreases blood Pi. This action of FGF23 is blocked by genetic ablation of MFS2. Furthermore, genetic overexpression of the fly FGF branchless (bnl) in the tubules induces expression of MFS2 and increases Malpighian tubule stones suggesting that bnl is the endogenous phosphaturic hormone in adult flies. Finally, genetic ablation of MFS2 increased fly life span, suggesting that Malpighian tubule stones are a key element whereby high Pi diet reduces fly longevity previously reported by us. In conclusion, MFS2 mediates excretion of Pi in Drosophila, which is as in higher species under the hormonal control of FGF-signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sistema Endocrino/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Cálculos Renales/patología , Túbulos Renales/patología , Fosfatos/metabolismo , Animales , Calcio/metabolismo , Dieta , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Humanos , Hiperfosfatemia/patología , Túbulos de Malpighi/patología , Túbulos de Malpighi/ultraestructura , Microinyecciones , Microesferas , Fosfatos/sangre , Interferencia de ARN , Temperatura
2.
J Am Soc Nephrol ; 25(10): 2366-75, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24700880

RESUMEN

Compound heterozygous and homozygous (comp/hom) mutations in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium (Na(+))-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a disorder characterized by renal phosphate wasting resulting in hypophosphatemia, correspondingly elevated 1,25(OH)2 vitamin D levels, hypercalciuria, and rickets/osteomalacia. Similar, albeit less severe, biochemical changes are observed in heterozygous (het) carriers and indistinguishable from those changes encountered in idiopathic hypercalciuria (IH). Here, we report a review of clinical and laboratory records of 133 individuals from 27 kindreds, including 5 previously unreported HHRH kindreds and two cases with IH, in which known and novel SLC34A3 mutations (c.1357delTTC [p.F453del]; c.G1369A [p.G457S]; c.367delC) were identified. Individuals with mutations affecting both SLC34A3 alleles had a significantly increased risk of kidney stone formation or medullary nephrocalcinosis, namely 46% compared with 6% observed in healthy family members carrying only the wild-type SLC34A3 allele (P=0.005) or 5.64% in the general population (P<0.001). Renal calcifications were also more frequent in het carriers (16%; P=0.003 compared with the general population) and were more likely to occur in comp/hom and het individuals with decreased serum phosphate (odds ratio [OR], 0.75, 95% confidence interval [95% CI], 0.59 to 0.96; P=0.02), decreased tubular reabsorption of phosphate (OR, 0.41; 95% CI, 0.23 to 0.72; P=0.002), and increased serum 1,25(OH)2 vitamin D (OR, 1.22; 95% CI, 1.05 to 1.41; P=0.008). Additional studies are needed to determine whether these biochemical parameters are independent of genotype and can guide therapy to prevent nephrocalcinosis, nephrolithiasis, and potentially, CKD.


Asunto(s)
Cálculos Renales/genética , Nefrocalcinosis/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación Missense
3.
PLoS One ; 8(3): e56753, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23520455

RESUMEN

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.


Asunto(s)
Proteínas de Drosophila/metabolismo , Longevidad/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Fosfatos/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Hemocitos/metabolismo , Hemolinfa/metabolismo , Longevidad/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Túbulos de Malpighi/metabolismo , Fosfatos/farmacología , Interferencia de ARN
4.
PLoS One ; 7(2): e31730, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359624

RESUMEN

The major facilitator superfamily (MFS) transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1-9 MFS orthologs (MFS10 and MFS13) specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [(33)P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/fisiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...