RESUMEN
Pancreatic adenocarcinoma (PDAC) is a rapidly progressing cancer that responds poorly to immunotherapies. Intratumoral tertiary lymphoid structures (TLS) have been associated with rare long-term PDAC survivors, but the role of TLS in PDAC and their spatial relationships within the context of the broader tumor microenvironment remain unknown. We generated a spatial multi-omics atlas encompassing 26 PDAC tumors from patients treated with combination immunotherapies. Using machine learning-enabled H&E image classification models and unsupervised gene expression matrix factorization methods for spatial transcriptomics, we characterized cellular states within TLS niches spanning across distinct morphologies and immunotherapies. Unsupervised learning generated a TLS-specific spatial gene expression signature that significantly associates with improved survival in PDAC patients. These analyses demonstrate TLS-associated intratumoral B cell maturation in pathological responders, confirmed with spatial proteomics and BCR profiling. Our study also identifies spatial features of pathologic immune responses, revealing TLS maturation colocalizing with IgG/IgA distribution and extracellular matrix remodeling. HIGHLIGHTS: Integrated multi-modal spatial profiling of human PDAC tumors from neoadjuvant immunotherapy clinical trials reveal diverse spatial niches enriched in TLS.TLS maturity is influenced by tumor location and the cellular neighborhoods in which TLS immune cells are recruited.Unsupervised machine learning of genome-wide signatures on spatial transcriptomics data characterizes the TLS-enriched TME and associates TLS transcriptomes with survival outcomes in PDAC.Interactions of spatially variable gene expression patterns showed TLS maturation is coupled with immunoglobulin distribution and ECM remodeling in pathologic responders.Intratumoral plasma cell and immunoglobin gene expression spatial dynamics demonstrate trafficking of TLS-driven humoral immunity in the PDAC TME. Significance: We report a spatial multi-omics atlas of PDAC tumors from a series of immunotherapy neoadjuvant clinical trials. Intratumorally, pathologic responders exhibit mature TLS that propagate plasma cells into malignant niches. Our findings offer insights on the role of TLS-associated humoral immunity and stromal remodeling during immunotherapy treatment.
RESUMEN
Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.
Asunto(s)
Vesículas Extracelulares , Fibroblastos , Melanoma , Neovascularización Patológica , Tetraspanina 29 , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Melanoma/patología , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , AngiogénesisRESUMEN
There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.
Asunto(s)
Proteína Morfogenética Ósea 2 , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Melanoma , Microambiente Tumoral , Animales , Masculino , Ratones , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Femenino , Humanos , Línea Celular Tumoral , Proteína Morfogenética Ósea 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Fibroblastos/metabolismo , Invasividad Neoplásica , Tirosina Quinasa del Receptor Axl , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Senescencia Celular , Caracteres Sexuales , Proliferación Celular , Envejecimiento , Ratones Endogámicos C57BLRESUMEN
Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.
Asunto(s)
Progresión de la Enfermedad , Inmunoterapia , Melanoma , Neoplasias Cutáneas , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Melanoma/inmunología , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/terapia , Inmunoterapia/métodos , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/terapia , Animales , Envejecimiento/inmunología , Factores de Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacologíaRESUMEN
Aged patients with melanoma (>65 years old) have more aggressive disease relative to young patients (<55 years old) for reasons that are not completely understood. Analysis of the young and aged secretome from human dermal fibroblasts identified >5-fold levels of IGF-binding protein 2 (IGFBP2) in the aged fibroblast secretome. IGFBP2 functionally triggers upregulation of the PI3K-dependent fatty acid biosynthesis program in melanoma cells. Melanoma cells co-cultured with aged dermal fibroblasts have higher levels of lipids relative to those co-cultured with young dermal fibroblasts, which can be lowered by silencing IGFBP2 expression in fibroblasts prior to treating with conditioned media. Conversely, ectopically treating melanoma cells with recombinant IGFBP2 in the presence of conditioned media from young fibroblasts or overexpressing IGFBP2 in melanoma cells promoted lipid synthesis and accumulation in melanoma cells. Treatment of young mice with rIGFBP2 increases tumor growth. Neutralizing IGFBP2 in vitro reduces migration and invasion in melanoma cells, and in vivo studies demonstrate that neutralizing IGFBP2 in syngeneic aged mice reduces tumor growth and metastasis. Our results suggest that aged dermal fibroblasts increase melanoma cell aggressiveness through increased secretion of IGFBP2, stressing the importance of considering age when designing studies and treatment. SIGNIFICANCE: The aged microenvironment drives metastasis in melanoma cells. This study reports that IGFBP2 secretion by aged fibroblasts induces lipid accumulation in melanoma cells, driving an increase in tumor invasiveness. Neutralizing IGFBP2 decreases melanoma tumor growth and metastasis.
Asunto(s)
Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Melanoma , Invasividad Neoplásica , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Humanos , Animales , Melanoma/patología , Melanoma/metabolismo , Ratones , Línea Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/patología , Movimiento Celular , Anciano , Persona de Mediana Edad , Lípidos , Metabolismo de los Lípidos , Factores de Edad , Ratones Endogámicos C57BLRESUMEN
Metastatic melanoma is among the most enigmatic advanced cancers to clinically manage despite immense progress in the way of available therapeutic options and historic decreases in the melanoma mortality rate. Most patients with metastatic melanoma treated with modern targeted therapies (for example, BRAFV600E/K inhibitors) and/or immune checkpoint blockade (for example, anti-programmed death 1 therapy) will progress, owing to profound tumor cell plasticity fueled by genetic and nongenetic mechanisms and dichotomous host microenvironmental influences. Here we discuss the determinants of tumor heterogeneity, mechanisms of therapy resistance and effective therapy regimens that hold curative promise.
Asunto(s)
Resistencia a Antineoplásicos , Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Microambiente Tumoral/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Terapia Molecular Dirigida/métodos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genéticaRESUMEN
Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Anciano , Animales , Humanos , Ratones , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/genética , Molécula 1 de Adhesión Intercelular/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Regulación hacia ArribaRESUMEN
Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE: Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.
Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Animales , Ratones , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Neoplasias Pancreáticas/patología , Páncreas/patología , Fibroblastos/patología , Microambiente Tumoral , Línea Celular Tumoral , Fibroblastos Asociados al Cáncer/patologíaRESUMEN
The microenvironment influences cell fate. In this collection of voices, researchers from the fields of cancer and regeneration highlight approaches to establish the importance of the microenvironment and discuss future directions to understand the complex interaction between cells and their surrounding environment and how this impacts on disease and regeneration.
Asunto(s)
Neoplasias , Humanos , Diferenciación Celular , Microambiente TumoralRESUMEN
Gene expression states persist for varying lengths of time at the single-cell level, a phenomenon known as gene expression memory. When cells switch states, losing memory of their prior state, this transition can occur in the absence of genetic changes. However, we lack robust methods to find regulators of memory or track state switching. Here, we develop a lineage tracing-based technique to quantify memory and identify cells that switch states. Applied to melanoma cells without therapy, we quantify long-lived fluctuations in gene expression that are predictive of later resistance to targeted therapy. We also identify the PI3K and TGF-ß pathways as state switching modulators. We propose a pretreatment model, first applying a PI3K inhibitor to modulate gene expression states, then applying targeted therapy, which leads to less resistance than targeted therapy alone. Together, we present a method for finding modulators of gene expression memory and their associated cell fates.
Asunto(s)
Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas , Diferenciación Celular/genética , Factor de Crecimiento Transformador betaRESUMEN
SUMMARY: Cancer is an age-related disease, with the majority of patients receiving their diagnosis after the age of 60 and most mortality from cancer occurring after this age. The tumor microenvironment changes drastically with age, which in turn affects cancer progression and treatment efficacy. Age-related changes to individual components of the microenvironment have received well-deserved attention over the past few decades, but the effects of aging at the interface of two or more microenvironmental components have been vastly understudied. In this perspective, we discuss the relationship between the aging extracellular matrix and the aging immune system, how they affect the tumor microenvironment, and how these multidisciplinary studies may open avenues for new therapeutics. Cancer is a disease of aging. With a rapidly aging population, we need to better understand the age-related changes that drive tumor progression, ranging from secreted changes to biophysical and immune changes.
Asunto(s)
Envejecimiento , Microambiente Tumoral , Humanos , Anciano , Transporte Biológico , Matriz ExtracelularRESUMEN
Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.
Asunto(s)
Antineoplásicos , Células Clonales , Resistencia a Antineoplásicos , Neoplasias , Humanos , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Código de Barras del ADN Taxonómico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Células Tumorales Cultivadas , Antineoplásicos/farmacologíaRESUMEN
Aged melanoma patients (>65 years old) have more aggressive disease relative to young patients (<55 years old) for reasons that are not completely understood. Analysis of the young and aged secretome from human dermal fibroblasts identified >5-fold levels of insulin-like growth factor binding protein 2 (IGFBP2) in the aged fibroblast secretome. IGFBP2 functionally triggers upregulation of the PI3K-dependent fatty acid biosynthesis program in melanoma cells through increases in FASN. Melanoma cells co-cultured with aged dermal fibroblasts have higher levels of lipids relative to young dermal fibroblasts, which can be lowered by silencing IGFBP2 expression in fibroblasts, prior to treating with conditioned media. Conversely, ectopically treating melanoma cells with recombinant IGFBP2 in the presence of conditioned media from young fibroblasts, promoted lipid synthesis and accumulation in the melanoma cells. Neutralizing IGFBP2 in vitro reduces migration and invasion in melanoma cells, and in vivo studies demonstrate that neutralizing IGFBP2 in syngeneic aged mice, ablates tumor growth as well as metastasis. Conversely, ectopic treatment of young mice with IGFBP2 in young mice increases tumor growth and metastasis. Our data reveal that aged dermal fibroblasts increase melanoma cell aggressiveness through increased secretion of IGFBP2, stressing the importance of considering age when designing studies and treatment. Significance: The aged microenvironment drives metastasis in melanoma cells. This study reports that IGFBP2 secretion by aged fibroblasts induces FASN in melanoma cells and drives metastasis. Neutralizing IGFBP2 decreases melanoma tumor growth and metastasis.
RESUMEN
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis , Neoplasias/patología , Microambiente Tumoral/fisiologíaRESUMEN
The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.
Asunto(s)
Actinas , Células Endoteliales , Células Endoteliales/metabolismo , Actinas/metabolismo , Retroalimentación , Transducción de Señal , Citoesqueleto de Actina/metabolismoRESUMEN
RNA labeling in situ has enormous potential to visualize transcripts and quantify their levels in single cells, but it remains challenging to produce high levels of signal while also enabling multiplexed detection of multiple RNA species simultaneously. Here, we describe clampFISH 2.0, a method that uses an inverted padlock design to efficiently detect many RNA species and exponentially amplify their signals at once, while also reducing the time and cost compared with the prior clampFISH method. We leverage the increased throughput afforded by multiplexed signal amplification and sequential detection to detect 10 different RNA species in more than 1 million cells. We also show that clampFISH 2.0 works in tissue sections. We expect that the advantages offered by clampFISH 2.0 will enable many applications in spatial transcriptomics.
Asunto(s)
ARN , Transcriptoma , ARN/genéticaRESUMEN
Disseminated cancer cells from primary tumours can seed in distal tissues, but may take several years to form overt metastases, a phenomenon that is termed tumour dormancy. Despite its importance in metastasis and residual disease, few studies have been able to successfully characterize dormancy within melanoma. Here we show that the aged lung microenvironment facilitates a permissive niche for efficient outgrowth of dormant disseminated cancer cells-in contrast to the aged skin, in which age-related changes suppress melanoma growth but drive dissemination. These microenvironmental complexities can be explained by the phenotype switching model, which argues that melanoma cells switch between a proliferative cell state and a slower-cycling, invasive state1-3. It was previously shown that dermal fibroblasts promote phenotype switching in melanoma during ageing4-8. We now identify WNT5A as an activator of dormancy in melanoma disseminated cancer cells within the lung, which initially enables the efficient dissemination and seeding of melanoma cells in metastatic niches. Age-induced reprogramming of lung fibroblasts increases their secretion of the soluble WNT antagonist sFRP1, which inhibits WNT5A in melanoma cells and thereby enables efficient metastatic outgrowth. We also identify the tyrosine kinase receptors AXL and MER as promoting a dormancy-to-reactivation axis within melanoma cells. Overall, we find that age-induced changes in distal metastatic microenvironments promote the efficient reactivation of dormant melanoma cells in the lung.
Asunto(s)
Envejecimiento , Pulmón , Melanoma , Metástasis de la Neoplasia , Células del Estroma , Microambiente Tumoral , Anciano , Envejecimiento/patología , Fibroblastos/patología , Humanos , Pulmón/patología , Melanoma/patología , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Neoplasia Residual , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Piel/patología , Células del Estroma/patología , Proteína Wnt-5a , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor AxlRESUMEN
Aging is a universal biological process that increases the risk of multiple diseases including cancer. Growing evidence shows that alterations in the genome and epigenome, driven by similar mechanisms, are found in both aged cells and cancer cells. In this review, we detail the genetic and epigenetic changes associated with normal aging and the mechanisms responsible for these changes. By highlighting genetic and epigenetic alterations in the context of tumorigenesis, cancer progression, and the aging tumor microenvironment, we examine the possible impacts of the normal aging process on malignant transformation. Finally, we examine the implications of age-related genetic and epigenetic alterations in both tumors and patients for the treatment of cancer.