Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296892

RESUMEN

Quantum dots (QDs) are widely used in optoelectronics, lighting, and photovoltaics leading to their potential release into the environment. The most promising alternative to the highly toxic cadmium selenide (CdSe) QDs are indium phosphide (InP) QDs, which show reduced toxicity and comparable optical and electronic properties. QD degradation leads to the release of toxic metal ions into the environment. Coating the QD core with robust shell(s) composed of another semi-conductor material enhances their properties and protects the QD from degradation. We recently developed double-shelled InP QDs, which proved to be less toxic than single-shell QDs. In the present study, we confirm their reduced cytotoxicity, with an LC50 at 77 nM for pristine gradient shell QDs and >100 nM for pristine thin and thick shell QDs. We also confirm that these three QDs, when exposed to simulated sunlight, show greater cytotoxicity compared to pristine ones, with LC50 ranging from 15 to 23 nM. Using a combination of spectroscopic and microscopic techniques, we characterize the degradation kinetics and transformation products of single- and double-shell QDs, when exposed to solar light at high temperature, simulating environmental conditions. Non-toxic pristine QDs degrade to form toxic In−phosphate, In−carboxylate, Zn−phosphate, and oxidized Se, all of which precipitate as heterogeneous deposits. Comparison of their degradation kinetics highlights that the QDs bearing the thickest ZnS outer shell are, as expected, the most resistant to photodegradation among the three tested QDs, as gradient shell, thin shell, and thick shell QDs lose their optical properties in less than 15 min, 60 min, and more than 90 min, respectively. They exhibit the highest photoluminescence efficiency, i.e., the best functionality, with a photoluminescence quantum yield in aqueous solution of 24%, as compared to 18% for the gradient shell and thin shell QDs. Therefore, they can be considered as safer-by-design QDs.

2.
Front Toxicol ; 3: 636976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295141

RESUMEN

Quantum dots (QDs) are colloidal fluorescent semiconductor nanocrystals with exceptional optical properties. Their widespread use, particularly in light-emitting diodes (LEDs), displays, and photovoltaics, is questioning their potential toxicity. The most widely used QDs are CdSe and CdTe QDs, but due to the toxicity of cadmium (Cd), their use in electrical and electronic equipment is now restricted in the European Union through the Restriction of hazardous substances in electrical and electronic equipment (RoHS) directive. This has prompted the development of safer alternatives to Cd-based QDs; among them, InP QDs are the most promising ones. We recently developed RoHS-compliant QDs with an alloyed core composed of InZnP coated with a Zn(Se,S) gradient shell, which was further coated with an additional ZnS shell to protect the QDs from oxidative surface degradation. In this study, the toxicity of single-shelled InZnP/Zn(Se,S) core/gradient shell and of double-shelled InZnP/Zn(Se,S)/ZnS core/shell/shell QDs was evaluated both in their pristine form and after aging in a climatic chamber, mimicking a realistic environmental weathering. We show that both pristine and aged QDs, whatever their composition, accumulate in the cytoplasm of human primary keratinocytes where they form agglomerates at the vicinity of the nucleus. Pristine QDs do not show overt toxicity to cells, while aged QDs show cytotoxicity and genotoxicity and significantly modulate the mRNA expression of proteins involved in zinc homeostasis, cell redox response, and inflammation. While the three aged QDs show similar toxicity, the toxicity of pristine gradient-shell QD is higher than that of pristine double-shell QD, confirming that adding a second shell is a promising safer-by-design strategy. Taken together, these results suggest that end-of-life degradation products from InP-based QDs are detrimental to skin cells in case of accidental exposure and that the mechanisms driving this effect are oxidative stress, inflammation, and disturbance of cell metal homeostasis, particularly Zn homeostasis. Further efforts to promote safer-by-design formulations of QDs, for instance by reducing the In and Zn content and/or implementing a more robust outer shell, are therefore warranted.

3.
Cells ; 9(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854219

RESUMEN

Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<10 µm). To be efficient, a sufficient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for efficient approach of BNCT.


Asunto(s)
Compuestos de Boro/metabolismo , Terapia por Captura de Neutrón de Boro/métodos , Animales , Femenino , Humanos , Ratones
4.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605163

RESUMEN

A facile hydrothermal method to synthesize water-soluble copper indium sulfide (CIS) nanocrystals (NCs) at 150 °C is presented. The obtained samples exhibited three distinct photoluminescence peaks in the red, green and blue spectral regions, corresponding to three size fractions, which could be separated by means of size-selective precipitation. While the red and green emitting fractions consist of 4.5 and 2.5 nm CIS NCs, the blue fraction was identified as in situ formed carbon nanodots showing excitation wavelength dependent emission. When used as light absorbers in quantum dot sensitized solar cells, the individual green and red fractions yielded power conversion efficiencies of 2.9% and 2.6%, respectively. With the unfractionated samples, the efficiency values approaching 5% were obtained. This improvement was mainly due to a significantly enhanced photocurrent arising from complementary panchromatic absorption.

5.
ACS Appl Mater Interfaces ; 11(39): 35630-35640, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31496235

RESUMEN

Many attempts have been made to synthesize cadmium-free quantum dots (QDs), using nontoxic materials, while preserving their unique optical properties. Despite impressive advances, gaps in knowledge of their intracellular fate, persistence, and excretion from the targeted cell or organism still exist, precluding clinical applications. In this study, we used a simple model organism (Hydra vulgaris) presenting a tissue grade of organization to determine the biodistribution of indium phosphide (InP)-based QDs by X-ray fluorescence imaging. By complementing elemental imaging with In L-edge X-ray absorption near edge structure, unique information on in situ chemical speciation was obtained. Unexpectedly, spectral profiles indicated the appearance of In-O species within the first hour post-treatment, suggesting a fast degradation of the InP QD core in vivo, induced mainly by carboxylate groups. Moreover, no significant difference in the behavior of bare core QDs and QDs capped with an inorganic Zn(Se,S) gradient shell was observed. The results paralleled those achieved by treating animals with an equivalent dose of indium salts, confirming the preferred bonding type of In3+ ions in Hydra tissues. In conclusion, by focusing on the chemical identity of indium along a 48 h long journey of QDs in Hydra, we describe a fast degradation process, in the absence of evident toxicity. These data pave the way to new paradigms to be considered in the biocompatibility assessment of QD-based biomedical applications, with greater emphasis on the dynamics of in vivo biotransformations, and suggest strategies to drive the design of future applied materials for nanotechnology-based diagnosis and therapeutics.


Asunto(s)
Hydra/metabolismo , Indio , Fosfinas , Puntos Cuánticos/química , Espectrometría por Rayos X , Animales , Indio/química , Indio/farmacocinética , Indio/farmacología , Fosfinas/química , Fosfinas/farmacocinética , Fosfinas/farmacología
6.
Front Chem ; 7: 466, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316974

RESUMEN

With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1-x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence quantum yields (PLQY) > 50% and similar PL decay times (64-67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant oxidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25-100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact.

7.
Sensors (Basel) ; 16(2): 197, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26861327

RESUMEN

The integration of semiconductor quantum dots (QDs) into homogeneous Förster resonance energy transfer (FRET) immunoassay kits for clinical diagnostics can provide significant advantages concerning multiplexing and sensitivity. Here we present a facile and functional QD-antibody conjugation method using three commercially available QDs with different photoluminescence (PL) maxima (605 nm, 655 nm, and 705 nm). The QD-antibody conjugates were successfully applied for FRET immunoassays against prostate specific antigen (PSA) in 50 µL serum samples using Lumi4-Tb (Tb) antibody conjugates as FRET donors and time-gated PL detection on a KRYPTOR clinical plate reader. Förster distance and Tb donor background PL were directly related to the analytical sensitivity for PSA, which resulted in the lowest limits of detection for Tb-QD705 (2 nM), followed by Tb-QD655 (4 nM), and Tb-QD605 (23 nM). Duplexed PSA detection using the Tb-QD655 and Tb-QD705 FRET-pairs demonstrated the multiplexing ability of our immunoassays. Our results show that FRET based on QD acceptors is suitable for multiplexed and sensitive biomarker detection in clinical diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...