Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
PLoS One ; 12(5): e0176960, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28464013

RESUMEN

Landscape genetic studies based on neutral genetic markers have contributed to our understanding of the influence of landscape composition and configuration on gene flow and genetic variation. However, the potential for species to adapt to changing landscapes will depend on how natural selection influences adaptive genetic variation. We demonstrate how landscape resistance models can be combined with genetic simulations incorporating natural selection to explore how the spread of adaptive variation is affected by landscape characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing regions of the southwestern United States as an example. We conducted genetic sampling and least-cost path modeling to optimize landscape resistance models independently for each region, and then simulated the spread of an adaptive allele favored by selection across each region. Optimized landscape resistance models differed between regions with respect to landscape variables included and their relationships to resistance, but the slope of terrain and the presence of water barriers and major roads had the greatest impacts on gene flow. Genetic simulations showed that differences among landscapes strongly influenced spread of adaptive genetic variation, with faster spread (1) in landscapes with more continuously distributed habitat and (2) when a pre-existing allele (i.e., standing genetic variation) rather than a novel allele (i.e., mutation) served as the source of adaptive genetic variation. The combination of landscape resistance models and genetic simulations has broad conservation applications and can facilitate comparisons of adaptive potential within and between landscapes.


Asunto(s)
Ecosistema , Flujo Génico , Modelos Genéticos , Selección Genética , Borrego Cimarrón/genética , Adaptación Biológica/genética , Animales , Simulación por Computador , Clima Desértico , Genotipo , Geografía , Repeticiones de Microsatélite , Análisis Multivariante , Sudoeste de Estados Unidos
3.
Conserv Biol ; 25(6): 1240-1249, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22070275

RESUMEN

Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations.


Resumen: La evidencia de la depresión por endogamia comúnmente es detectada a partir de atributos de la adaptabilidad de animales, sin embargo sus efectos sobre las tasas de crecimiento poblacional raramente son evaluados. Examinamos si la depresión por endogamia estaba afectando a Ovis canadensis sierrae, una subespecie enlistada como en peligro en el Acta de Especies en Peligro de E.U.A. Nuestros objetivos fueron caracterizar la variación genética de esta subespecie; probar si la depresión por endogamia afecta las tasas vitales (supervivencia de adultos y fecundidad de hembras); evaluar si la depresión por endogamia puede limitar la recuperación dela subespecie y examinar el potencial para el manejo genético para incrementar las tasas de crecimiento poblacional. La variación genética en 4 subpoblaciones O. c. sierrae fue la más baja entre las reportadas para cualquier otra población silvestre de O. c. sierrae y nuestros resultados sugieren que la depresión por endogamia ha reducido la fecundidad de hembras adultas. Sin embargo, los tamaños poblacionales y tasas de crecimiento predichos por modelos de proyección matriciales demostraron que la depresión por endogamia no inhibiría sustancialmente la recuperación de O. c. sierrae en las próximas 8 generaciones (48 años). Más aun, simulaciones del rescate genético no sugirieron que tales actividades incrementarían los tamaños poblacionales o tasas de crecimiento durante el período modelado (10 generaciones, 60 años). Solo las simulaciones que aumentaron la población de Mono Basin con variación genética de otras subespecies, lo cual no es una opción de manejo actual, predijeron incrementos significativos en el tamaño poblacional. Aunque recomendamos que las actividades de recuperación deberían minimizar pérdidas futuras en la variación genética, parece poco probable que los efectos genéticos en estas poblaciones en peligro-ya sea negativas (depresión por endogamia) o positivas (rescate genético de la subespecie)-comprometan o estimulen dramáticamente los esfuerzos de conservación a corto plazo. La distinción entre la detección de los efectos de la depresión por endogamia sobre una tasa vital componente (e.g., fecundidad) y los efectos de la depresión por endogamia sobre el crecimiento poblacional resalta la importancia de cuantificar, mediante datos recolectados en campo, los costos de la endogamia en relación con la dinámica poblacional para el manejo efectivo de poblaciones en peligro.


Asunto(s)
Especies en Peligro de Extinción , Endogamia , Ovinos/fisiología , Animales , Conservación de los Recursos Naturales , Femenino , Fertilidad , Variación Genética , Heterocigoto , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Nevada , Densidad de Población , Dinámica Poblacional , Conducta Sexual Animal , Ovinos/genética
4.
Ecol Appl ; 20(6): 1753-65, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20945773

RESUMEN

To develop effective management strategies for the recovery of threatened and endangered species, it is critical to identify those vital rates (survival and reproductive parameters) responsible for poor population performance and those whose increase will most efficiently change a population's trajectory. In actual application, however, approaches identifying key vital rates are often limited by inadequate demographic data, by unrealistic assumptions of asymptotic population dynamics, and of equal, infinitesimal changes in mean vital rates. We evaluated the consequences of these limitations in an analysis of vital rates most important in the dynamics of federally endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae). Based on data collected from 1980 to 2007, we estimated vital rates in three isolated populations, accounting for sampling error, variance, and covariance. We used analytical sensitivity analysis, life-stage simulation analysis, and a novel non-asymptotic simulation approach to (1) identify vital rates that should be targeted for subspecies recovery; (2) assess vital rate patterns of endangered bighorn sheep relative to other ungulate populations; (3) evaluate the performance of asymptotic vs. non-asymptotic models for meeting short-term management objectives; and (4) simulate management scenarios for boosting bighorn sheep population growth rates. We found wide spatial and temporal variation in bighorn sheep vital rates, causing rates to vary in their importance to different populations. As a result, Sierra Nevada bighorn sheep exhibited population-specific dynamics that did not follow theoretical expectations or those observed in other ungulates. Our study suggests that vital rate inferences from large, increasing, or healthy populations may not be applicable to those that are small, declining, or endangered. We also found that, while asymptotic approaches were generally applicable to bighorn sheep conservation planning; our non-asymptotic population models yielded unexpected results of importance to managers. Finally, extreme differences in the dynamics of individual bighorn sheep populations imply that effective management strategies for endangered species recovery may often need to be population-specific.


Asunto(s)
Conservación de los Recursos Naturales , Borrego Cimarrón/fisiología , Animales , California , Femenino , Longevidad , Masculino , Modelos Biológicos , Dinámica Poblacional , Reproducción , Factores de Tiempo
6.
Mol Ecol ; 15(14): 4295-302, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17107466

RESUMEN

Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low-elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher-elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert-adapted ungulate.


Asunto(s)
Altitud , Ecosistema , Variación Genética , Efecto Invernadero , Borrego Cimarrón/genética , Borrego Cimarrón/fisiología , Alelos , Animales , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...