Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 62(18): 7357-7378, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862997

RESUMEN

Preclinical imaging benefits from simultaneous acquisition of high-resolution anatomical and molecular data. Additionally, PET/MRI systems can provide functional PET and functional MRI data. To optimize PET sensitivity, we propose a system design that fully integrates the MRI coil into the PET system. This allows positioning the scintillators near the object but requires an optimized design of the MRI coil and PET detector. It further requires a new approach in realizing the radiofrequency (RF) shielding. Thus, we propose the use of an optically transparent RF shielding material between the PET scintillator and the light sensor, suppressing the interference between both systems. We evaluated two conductive foils (ITO, 9900) and a wire mesh. The PET performance was tested on a dual-layer scintillator consisting of 12 × 12 LSO matrices, shifted by half a pitch. The pixel size was 0.9 × 0.9 mm2; the lengths were 10.0 mm and 5.0 mm, respectively. For a light sensor, we used a 4 × 4 SiPM array. The RF attenuation was measured from 320 kHz to 420 MHz using two pick-up coils. MRI-compatibility and shielding effect of the materials were evaluated with an MRI system. The average FWHM energy resolution at 511 keV of all 144 crystals of the layer next to the SiPM was deteriorated from 15.73 ± 0.24% to 16.32 ± 0.13%, 16.60 ± 0.25%, and 19.16 ± 0.21% by the ITO foil, 9900 foil, mesh material, respectively. The average peak-to-valley ratio of the PET detector changed from 5.77 ± 0.29 to 4.50 ± 0.39, 4.78 ± 0.48, 3.62 ± 0.16, respectively. The ITO, 9900, mesh attenuated the scintillation light by 11.3 ± 1.6%, 11.0 ± 1.8%, 54.3 ± 0.4%, respectively. To attenuate the RF from 20 MHz to 200 MHz, mesh performed better than copper. The results show that an RF shielding material that is sufficiently transparent for scintillation light and is MRI compatible can be obtained. This result enables the development of a fully integrated PET detector and MRI coil assembly.


Asunto(s)
Luz , Imagen por Resonancia Magnética/métodos , Posicionamiento del Paciente/instrumentación , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Ondas de Radio , Humanos
2.
Mol Imaging Biol ; 17(5): 595-608, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26286794

RESUMEN

This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from February 23 to 27, 2015. Specifically, we summarise the three days of invited presentations from active researchers in this and associated fields augmented by round table discussions and dialogue boards with specific topics. These include the use of PET/MRI in cardiovascular disease, paediatrics, oncology, neurology and multi-parametric imaging, the latter of which was suggested as a key promoting factor for the wider adoption of integrated PET/MRI. Discussions throughout the workshop and a poll taken on the final day demonstrated that attendees felt more strongly that PET/MRI has further advanced in both technical versatility and acceptance by clinical and research-driven users from the status quo of last year. Still, with only minimal evidence of progress made in exploiting the true complementary nature of the PET and MRI-based information, PET/MRI is still yet to achieve its potential. In that regard, the conclusion of last year's meeting "the real work has just started" still holds true.


Asunto(s)
Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Alemania , Humanos
3.
Mol Imaging Biol ; 17(3): 297-312, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25672749

RESUMEN

This paper summarises the proceedings and discussions at the third annual workshop held in Tübingen, Germany, dedicated to the advancement of the technical, scientific and clinical applications of combined PET/MRI systems in humans. Two days of basic scientific and technical instructions with "hands-on" tutorials were followed by 3 days of invited presentations from active researchers in this and associated fields augmented by round-table discussions and dialogue boards with specific themes. These included the use of PET/MRI in paediatric oncology and in adult neurology, oncology and cardiology, the development of multi-parametric analyses, and efforts to standardise PET/MRI examinations to allow pooling of data for evaluating the technology. A poll taken on the final day demonstrated that over 50 % of those present felt that while PET/MRI technology underwent an inevitable slump after its much-anticipated initial launch, it was now entering a period of slow, progressive development, with new key applications emerging. In particular, researchers are focusing on exploiting the complementary nature of the physiological (PET) and biochemical (MRI/MRS) data within the morphological framework (MRI) that these devices can provide. Much of the discussion was summed up on the final day when one speaker commented on the state of PET/MRI: "the real work has just started".


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Cardiología/métodos , Alemania , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Oncología Médica/métodos , Neurología/métodos
4.
Technol Cancer Res Treat ; 9(1): 5-20, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20082526

RESUMEN

The combination of PET and MR in one imaging device has certain advantages over conventional imaging modalities. These include: no additional radiation dose from the MR, superior soft tissue contrast and a multitude of tracers for PET. Certain technical challenges exist when designing a PET/MR system. On the one hand these stem from the presence of the strong MR magnetic field and the addition of PET components to the MR system. Different approaches are presented to overcome these technical obstacles ranging from long optical fibers to systems that use semiconductor light detectors for photon counting. The applications of combined PET/MR are profound in the field of oncology and allow imaging of the four main processes in cancer formation: apoptosis resistance, angiogenesis, proliferation and metastasis. PET/MR has also many clinical and research applications in neurology and cardiology. Alternative techniques such as image fusion, hyperpolarized imaging, 17O imaging and whole body diffusion are discussed in respect to their relevance regarding PET/MR. Simultaneous multifunctional and anatomical imaging using PET/MR has a great potential to impact biomedical imaging in research and clinic.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias Experimentales/diagnóstico , Tomografía de Emisión de Positrones/métodos , Animales , Investigación Biomédica/tendencias , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...