Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0302814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38857296

RESUMEN

In this study, we introduce an optimization method for high-speed gear trimming in electric vehicles, focusing on variations in input torque and speed. This approach is designed to aid in vibration suppression in electric vehicle gears. We initially use Tooth Contact Analysis (TCA) and Loaded Tooth Contact Analysis (LTCA) to investigate meshing point localization, considering changes in gear tooth surface and deformations due to load. Based on impact mechanics theory, we then derive a formula for the maximum impact force. A 12-degree-of-freedom bending-torsion-axis coupled dynamic model for the helical gear drive in the gearbox's input stage is developed using the centralized mass method, allowing for an extensive examination of high-speed gear vibration characteristics. Through a genetic algorithm, we optimize the tooth profile and tooth flank parabolic modification coefficients, resulting in optimal vibration-suppressing tooth surfaces. Experimental results under various input torques and speeds demonstrate that the overall vibration amplitude is stable and lower than that of conventional gear shaping methods. Specifically, the root mean square of vibration acceleration along the meshing line under different conditions is 58.02 m/s2 and 20.33 m/s2, respectively. The vibration acceleration in the direction of the meshing line is 20.33 m/s2 and 20.02 m/s2 under varying torques and speeds, with 20.33 m/s2 being the lowest. Furthermore, the average magnitude of the meshing impact force is significantly reduced to 5015.2. This high-speed gear reshaping method not only enhances gear dynamics and reliability by considering changes in input torque and speed but also effectively reduces vibration in electric vehicle gear systems. The study provides valuable insights and methodologies for the design and optimization of electric vehicle gears, focusing on comprehensive improvement in dynamic performance.


Asunto(s)
Torque , Vibración , Algoritmos , Vehículos a Motor , Diseño de Equipo , Modelos Teóricos , Humanos
2.
Front Plant Sci ; 15: 1368284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638348

RESUMEN

Promoters are one of the most critical elements in regulating gene expression. They are considered essential biotechnological tools for heterologous protein production. The one most widely used in plants is the 35S promoter from cauliflower mosaic virus. However, our study for the first time discovered the 35S promoter reduced the expression of exogenous proteins under increased antibiotic stress. We discovered an endogenous strong promoter from duckweed named LpSUT2 that keeps higher initiation activity under antibiotic stress. Stable transformation in duckweed showed that the gene expression of eGFP in the LpSUT2:eGFP was 1.76 times that of the 35S:eGFP at 100 mg.L-1 G418 and 6.18 times at 500 mg.L-1 G418. Notably, with the increase of G418 concentration, the gene expression and the fluorescence signal of eGFP in the 35S:eGFP were weakened, while the LpSUT2:eGFP only changed slightly. This is because, under high antibiotic stress, the 35S promoter was methylated, leading to the gene silencing of the eGFP gene. Meanwhile, the LpSUT2 promoter was not methylated and maintained high activity. This is a previously unknown mechanism that provides us with new insights into screening more stable promoters that are less affected by environmental stress. These outcomes suggest that the LpSUT2 promoter has a high capacity to initiate the expression of exogenous proteins. In conclusion, our study provides a promoter tool with potential application for plant genetic engineering and also provides new insights into screening promoters.

3.
Front Oncol ; 13: 1158863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404754

RESUMEN

Background: Cancer-associated fibroblasts (CAFs) are essential tumoral components of gastric cancer (GC), contributing to the development, therapeutic resistance and immune-suppressive tumor microenvironment (TME) of GC. This study aimed to explore the factors related to matrix CAFs and establish a CAF model to evaluate the prognosis and therapeutic effect of GC. Methods: Sample information from the multiply public databases were retrieved. Weighted gene co-expression network analysis was used to identify CAF-related genes. EPIC algorithm was used to construct and verify the model. Machine-learning methods characterized CAF risk. Gene set enrichment analysis was employed to elucidate the underlying mechanism of CAF in the development of GC. Results: A three-gene (GLT8D2, SPARC and VCAN) prognostic CAF model was established, and patients were markedly divided according to the riskscore of CAF model. The high-risk CAF clusters had significantly worse prognoses and less significant responses to immunotherapy than the low-risk group. Additionally, the CAF risk score was positively associated with CAF infiltration in GC. Moreover, the expression of the three model biomarkers were significantly associated with the CAF infiltration. GSEA revealed significant enrichment of cell adhesion molecules, extracellular matrix receptors and focal adhesions in patients at a high risk of CAF. Conclusion: The CAF signature refines the classifications of GC with distinct prognosis and clinicopathological indicators. The three-gene model could effectively aid in determining the prognosis, drug resistance and immunotherapy efficacy of GC. Thus, this model has promising clinical significance for guiding precise GC anti-CAF therapy combined with immunotherapy.

4.
Aging (Albany NY) ; 15(10): 4051-4070, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37244287

RESUMEN

BACKGROUND: Epigenetic regulations of immune responses are essential for cancer development and growth. As a critical step, comprehensive and rigorous explorations of m6A methylation are important to determine its prognostic significance, tumor microenvironment (TME) infiltration characteristics and underlying relationship with glioblastoma (GBM). METHODS: To evaluate m6A modification patterns in GBM, we conducted unsupervised clustering to determine the expression levels of GBM-related m6A regulatory factors and performed differential analysis to obtain m6A-related genes. Consistent clustering was used to generate m6A regulators cluster A and B. Machine learning algorithms were implemented for identifying TME features and predicting the response of GBM patients receiving immunotherapy. RESULTS: It is found that the m6A regulatory factor significantly regulates the mutation of GBM and TME. Based on Europe, America, and China data, we established m6Ascore through the m6A model. The model accurately predicted the results of 1206 GBM patients from the discovery cohort. Additionally, a high m6A score was associated with poor prognoses. Significant TME features were found among the different m6A score groups, which demonstrated positive correlations with biological functions (i.e., EMT2) and immune checkpoints. CONCLUSIONS: m6A modification was important to characterize the tumorigenesis and TME infiltration in GBM. The m6Ascore provided GBM patients with valuable and accurate prognosis and prediction of clinical response to various treatment modalities, which could be useful to guide patient treatments.


Asunto(s)
Glioblastoma , Humanos , Biología Computacional , Glioblastoma/diagnóstico , Glioblastoma/terapia , Inmunoterapia , Aprendizaje Automático , Metilación , Pronóstico , Microambiente Tumoral/genética
5.
Front Plant Sci ; 13: 996618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352881

RESUMEN

The local endocytosis of membrane proteins is critical for many physiological processes in plants, including the regulation of growth, development, nutrient absorption, and osmotic stress response. Much of our knowledge on the local endocytosis of plasma membrane (PM) protein only focuses on the polar growth of pollen tubes in plants and neuronal axon in animals. However, the role of local endocytosis of PM proteins in guard cells has not yet been researched. Here, we first cloned duckweed SUT2 (sucrose transporter 2) protein and then conducted subcellular and histological localization of the protein. Our results indicated that LpSUT2 (Landoltia punctata 0202 SUT2) is a PM protein highly expressed on guard cells. In vitro experiments on WT (wild type) lines treated with high sucrose concentration showed that the content of ROS (reactive oxygen species) in guard cells increased and stomatal conductance decreased. We observed the same results in the lines after overexpression of the LpSUT2 gene with newfound local endocytosis of LpSUT2. The local endocytosis mainly showed that LpSUT2 was uniformly distributed on the PM of guard cells in the early stage of development, and was only distributed in the endomembrane of guard cells in the mature stage. Therefore, we found the phenomenon of guard cell LpSUT2 local endocytosis through the changes of duckweed stomata and concluded that LpSUT2 local endocytosis might be dependent on ROS accumulation in the development of duckweed guard cells. This paper might provide future references for the genetic improvement and water-use efficiency in other crops.

6.
Front Oncol ; 11: 736363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868924

RESUMEN

BACKGROUND AND OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the DNA polymerase delta (POLD) family is significantly related to cancer prognosis. This study aimed to explore the significance of the POLD family in HCC via the DNA damage repair (DDR) pathway. METHODS: Data mining was conducted using bioinformatics methods. RNA sequencing and clinicopathological data were collected from The Cancer Genome Atlas, GTEx database and the Gumz Renal cohort. Statistical analyses were also performed in cancer samples (n>12,000) and the Affiliated Hospital of Youjiang Medical University for Nationalities (AHYMUN, n=107) cohort. RESULTS: The POLD family (POLD1-4) was identified as the most important functional component of the DDR pathway. Based on the analysis of independent cohorts, we found significantly elevated POLD expression in HCC compared with normal tissues. Second, we investigated the prognostic implication of elevated POLD1 expression in HCC and pan-cancers, revealing that increased POLD1 levels were correlated to worse prognoses for HCC patients. Additionally, we identified 11 hub proteins interacting closely with POLD proteins in base excision repair, protein-DNA complex and mismatch repair signaling pathways. Moreover, POLD1 mutation functioned as an independent biomarker to predict the benefit of targeted treatment. Importantly, POLD1 expression was associated with immune checkpoint molecules, including CD274, CD80, CD86, CTLA4, PDCD1 and TCGIT, and facilitated an immune-excluded tumor microenvironment. Additionally, we confirmed that elevated POLD1 expression was closely correlated with the aggressive progression and poor prognosis of HCC in the real-world AHYMUN cohort. CONCLUSION: We identified a significant association between elevated POLD1 expression and poor patient survival and immune-excluded tumor microenvironment of HCC. Together, these findings indicate that POLD1 provides a valuable biomarker to guide the molecular diagnosis and development of novel targeted therapeutic strategies for HCC patients.

7.
Ecotoxicol Environ Saf ; 218: 112263, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33975223

RESUMEN

For controlling heavy metal pollution, the utilization of carboxylic acids (CAs) combined with sulfate-reducing bacteria (SRB) for continuous and stable remediation of Cr (VI)-contaminated soil was comprehensively investigated. At pH 3, citrate and lactate had photocatalysis characteristics that enabled them to reduce high Cr (VI) concentrations. The reduction efficiencies of citrate and lactate were 99.16-100% and 80.78-87.00%, respectively. In the 40 mg L-1 Cr (VI) treatment, the total Cr adsorption rate of soil was 61.39-68.31%; as the pH increased, the Cr species adsorption capacity of the soil decreased. Following the addition of exogenous 100 mg L-1 Cr (VI), the Cr (VI) content of re-contaminated soil was reduced to 16.2734 ± 0.9505 mg L-1 or 15.8618 mg kg-1 by adding citrate or lactate. Then, using SRB via culture by mulching, addition of citrate or lactate markedly reduced the toxicity of Cr (VI). The respective citrate or lactate treatments had sulfur concentrations of sulfide from deep soil (high-sulfide layer) of 70.54 ± 17.59 and 98.85 ± 13.84 mg kg-1, respectively, and released Cr (VI) concentrations of 0.22 ± 0.25 and 3.64 ± 3.32 mg kg-1, respectively, due to oxidation upon air exposure. We used a two-stage remediation strategy for these treatments: First, CAs were used for photocatalytic reduction to reduce Cr (VI); next, CAs were utilized as carbon sources by SRB, which further reduced Cr (VI) and stabilized Cr species. In addition, citrate was more conducive than lactate to maintaining the stability of the soil microbial community. The results show that this method has potential in the remediation of Cr (VI)-contaminated soil.

8.
Chemosphere ; 279: 130437, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33901894

RESUMEN

In controlling toxic Cr(Ⅵ) pollution, the sulfate-reducing bacteria (SRB) method-a bioresource technology-is considered more sustainable and stable than synthetic technologies; however, its mechanisms of metal removal are unclear. This study investigated the mechanism of the use of citrate as a carbon source in an SRB bioreactor for Cr(Ⅵ) removal by disassemble or simulation approach. We show that citrate can mask toxicity, whereby the IC50 value (inhibitory concentration affecting 50% of the test population) of citrate was higher than that of lactate, and that citrate can also protect water systems from oxidation. The anti-oxidation rate of citrate ranged from 76.00% to 90.92%; whereas for citrate‒Cr(Ⅲ), the oxidation rate was only 0.185%-0.587%. Citrate can up-regulate microbial genes and functions, causing acetate and sulfide (NaFeS2) accumulation. Acetate addition promoted Cr adsorption by sulfide (mainly NaFeS2) and promoted sulfide sedimentation. Moreover, in addition to Cr(Ⅵ) reduction and Cr(Ⅲ)‒sulfide generation, the addition of sulfide promoted sedimentation; the correlation coefficient between the sedimentation coefficient and the sulfur content was r = -0.88877 at p < 0.01. Therefore, citrate had a systemic radiative effect on every aspect of the SRB‒citrate system model for Cr(Ⅵ) removal. In addition to the reduction in the former simple model, an integrative effect (including adsorption, sedimentation, and metabolism) was combined with NaFeS2 for Cr removal, which was regulated by the SRB‒citrate system. Exploration and understanding of these mechanisms promote SRB‒citrate methods to be wider implications in practice.


Asunto(s)
Ácido Cítrico , Sulfatos , Bacterias/genética , Reactores Biológicos , Cromo/toxicidad , Oxidación-Reducción
9.
World J Microbiol Biotechnol ; 36(12): 182, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170386

RESUMEN

Lactate are proved to be attractive electron donor for the production of n-caproic acid (CA) that is a high value-added fuel precursor and chemical feedstock, but little is known about molecular mechanism of lactate transformation. In the present study, the gene for L-lactate dehydrogenase (LDH, EC.1.1.1.27) from a Ruminococcaceae strain CPB6 was cloned and expressed in Escherichia coli BL21 (DE3) with plasmid pET28a. The recombinant LDH exhibited molecular weight of 36-38 kDa in SDS-PAGE. The purified LDH was found to have the maximal oxidation activity of 29.6 U/mg from lactate to pyruvate at pH 6.5, and the maximal reduction activity of 10.4 U/mg from pyruvate to lactate at pH 8.5, respectively. Strikingly, its oxidative activity predominates over reductive activity, leading to a 17-fold increase for the utilization of lactate in E. coli/pET28a-LDH than E. coli/pET28a. The CPB6 LDH gene encodes a 315 amino acid protein sharing 42.19% similarity with Clostridium beijerinckii LDH, and lower similarity with LDHs of other organisms. Significant difference were observed between the CPB6 LDH and C. beijerinckii and C. acetobutylicum LDH in the predicted tertiary structure and active center. Further, X-ray crystal structure analysis need to be performed to verify the specific active center of the CPB6 LDH and its role in the conversion of lactate into CA.


Asunto(s)
Clostridiales/enzimología , Escherichia coli/crecimiento & desarrollo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Clostridiales/genética , Cristalografía por Rayos X , Escherichia coli/genética , Concentración de Iones de Hidrógeno , L-Lactato Deshidrogenasa/química , Ácido Láctico/metabolismo , Modelos Moleculares , Peso Molecular , Plásmidos/genética , Estructura Terciaria de Proteína , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Bioresour Technol ; 310: 123466, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32388207

RESUMEN

In this study, anodic ammonia oxidation and denitrification were performed in single-chamber bioelectrochemical systems at a wide range of anodic potentials (-400 to +400 mV) versus Ag/AgCl. The low coulombic efficiencies (~30.84%) in reactors were mainly due to electrons being transferred to atmospheric oxygen through the electrode and reversal of the electrode. The removal efficiencies of acetate, ammonia, and total nitrogen were 100%, 100%, and 40.44% at +200 mV and 100%, 100%, and 50.24% at -200 mV, respectively. The nitrogen-removal mechanisms were nitrogen respiration/nitrate reduction at +200 mV and denitrification at -200 mV, and ammonia oxidation occurred by coupling with sulfate-reducing at -300 and -400 mV. Thauera, Comamonas, Alicycliphilus, Nitrosomonas, Desulforhabdus, Dethiosulfatibacter, and Desulfomicrobium were the dominant genera at the anode which participated in the nitrification/denitrification or sulfate-reducing processes. In summary, ammonia oxidation and denitrification could be coupled with carbon-removal or sulfur-reduction using a bio-anode with a suitable anodic potential.


Asunto(s)
Amoníaco , Desnitrificación , Reactores Biológicos , Electrodos , Electrólisis , Nitrificación , Nitrógeno , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...