Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414984, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147723

RESUMEN

Osmotic energy from the ocean has been thoroughly studied, but that from saline-alkali lakes is constrained by the ion-exchange membranes due to the trade-off between permeability and selectivity, stemming from the unfavorable structure of nanoconfined channels, pH tolerance, and chemical stability of the membranes. Inspired by the rapid water transport in xylem conduit structures, we propose a horizontal transport MXene (H-MXene) with ionic sequential transport nanochannels, designed to endure extreme saline-alkali conditions while enhancing ion selectivity and permeability. The H-MXene demonstrates superior ion conductivity of 20.67 S m-1 in 1 M NaCl solution and a diffusion current density of 308 A m-2 at a 10-fold salinity gradient of NaCl solution, significantly outperforming the conventional vertical transport MXene (V-MXene). Both experimental and simulation studies have confirmed that H-MXene represents a novel approach to circumventing the permeability-selectivity trade-off. Moreover, it exhibits efficient ion transport capabilities, addressing the gap in saline-alkali osmotic power generation.

2.
Environ Int ; 191: 108950, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39190977

RESUMEN

BACKGROUND: While vegetation type, population density and proximity to greenspaces have been linked to human health, what type and location of greenspace matter most have remained unclear. In this context, there are question marks over investment-style metrics. OBJECTIVES: This paper aims at establishing what vegetation type may matter most in modifying heat-mortality associations, and what the optimal buffer distances of total and specific types of greenspace exposure associated with reduced heat-related mortality risks are. METHODS: We conducted small-area analyses using daily mortality data for 286 Territory Planning Units (TPUs) across Hong Kong and 1 × 1 km gridded air temperature data for the summer months (2005-2018). Using a case time series design, we examined effect modifications of total and specific types of greenspaces, as well as population-weighted exposure at varying buffer distances (200-4000 m). We tested the significance of effect modifications by comparing relative risks (RRs) between the lowest and highest quartiles of each greenspace exposure metric; and explored the strength of effect modifications by calculating the ratio of RRs. RESULTS: Forests, unlike grasslands, showed significant effect modifications on heat-mortality associations, with RRs rising from 0.98 (95 %CI: 0.92,1.05) to 1.06 (1.03, 1.10) for the highest to lowest quartiles (p-value = 0.037) The optimal distances associated with the most apparent effects were around 1 km for population-weighted exposure, with the ratio of RRs being 1.424 (1.038,1.954) for NDVI, 1.191 (1.004,1.413) for total greenspace, and 1.227 (1.024,1.470) for forests. A marked difference was observed in terms of the paired area-level and optimal distance-based exposure to total greenspace and forests under extreme heat (p-values < 0.05). DISCUSSION: Our findings suggest that greenspace, particularly nearby forests, may significantly mitigate heat-related mortality risks.

3.
J Imaging ; 10(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39194991

RESUMEN

Liver segmentation technologies play vital roles in clinical diagnosis, disease monitoring, and surgical planning due to the complex anatomical structure and physiological functions of the liver. This paper provides a comprehensive review of the developments, challenges, and future directions in liver segmentation technology. We systematically analyzed high-quality research published between 2014 and 2024, focusing on liver segmentation methods, public datasets, and evaluation metrics. This review highlights the transition from manual to semi-automatic and fully automatic segmentation methods, describes the capabilities and limitations of available technologies, and provides future outlooks.

4.
Ther Innov Regul Sci ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117938

RESUMEN

In multi-regional clinical trials, planning the sample size for participating regions is essential for the evaluation of the treatment effect consistency across regions. Based on the MRCT design and sample size allocation to regions, consistency probability is usually used to predict the consistent trend between regions and the overall population, while preserving a certain proportion of the overall treatment effect. Specific enrollment characteristics in a region of interest should also be considered during the time of the sample size planning. To facilitate efficient and harmonized regional sample size planning, we have developed RegionSizeR, a comprehensive and user-friendly interactive web-based R shiny application that can be obtained from https://github.com/rsr-ss/RegionSizeR . This simulation-based app can serve as an initial point for discussions on sample size allocation plans, following preservation of treatment effect method in ICH E17. The app accommodates various types of endpoints and designs, including continuous, binary, and time-to-event endpoints, for superiority, non-inferiority, and MCP-Mod designs. To ensure the validity of this app, independent testing is conducted allowing a discrepancy of no more than 1% across all results considering various scenarios.

5.
ACS Nano ; 18(28): 18344-18354, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38954797

RESUMEN

Graphite exhibits crystal anisotropy, which impedes the mass transfer of ion intercalation and extraction processes in Li-ion batteries. Herein, a dual-shock chemical strategy has been developed to synthesize the carbon anode. This approach comprised two key phases: (1) a thermal shock utilizing ultrahigh temperature (3228 K) can thermodynamically facilitate graphitization; (2) a mechanical shock (21.64 MPa) disrupting the π-π interactions in the aromatic chains of carbon can result in hybrid-structured carbon composed of crystalline and amorphous carbon. The optimized carbon (DSC-200-0.3) demonstrates a capacity of 208.61 mAh/g at a 10C rate, with a significant enhancement comparing with 15 mAh/g of the original graphite. Impressively, it maintains 81.06% capacity even after 3000 charge-discharge cycles. Dynamic process analysis reveals that this superior rate performance is attributed to a larger interlayer spacing facilitating ion transport comparing with the original graphite, disordered amorphous carbon for additional lithium storage sites, and crystallized carbon for enhanced charge transfer. The dual-shock chemical approach offers a cost-effective and efficient method to rapidly produce hybrid-structured carbon anodes, enabling 10C fast charging capabilities in lithium-ion batteries.

6.
Explor Target Antitumor Ther ; 5(3): 641-677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966172

RESUMEN

Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.

7.
Nat Commun ; 15(1): 6182, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039038

RESUMEN

The nanoscale electrical double layer plays a crucial role in macroscopic ion adsorption and reaction kinetics. In this study, we achieve controllable ion migration by dynamically regulating asymmetric electrical double layer formation. This tailors the ionic-electronic coupling interface, leading to the development of triboiontronics. Controlling the charge-collecting layer coverage on dielectric substrates allows for charge collection and adjustment of the substrate-liquid contact electrification property. By dynamically managing the asymmetric electrical double layer formation between the dielectric substrate and liquids, we develop a direct-current triboiontronic nanogenerator. This nanogenerator produces a transferred charge density of 412.54 mC/m2, significantly exceeding that of current hydrovoltaic technology and conventional triboelectric nanogenerators. Additionally, incorporating redox reactions to the process enhances the peak power and transferred charge density to 38.64 W/m2 and 540.70 mC/m2, respectively.

8.
Environ Pollut ; 360: 124611, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053806

RESUMEN

Overexposure of sewage workers to bioaerosol released from wastewater treatment plants (WWTPs) can cause serious infections, but practical method for controlling their health risk is lacking. In this study, reverse quantitative microbial risk assessment was used to estimate the daily critical exposure time (CET) of sewage workers exposing to Staphylococcus aureus bioaerosol emitted by three emission sources facilities in a WWTP based on either U.S. EPA or WHO benchmark, and sensitivity analysis was conducted to analyze the influence of various parameters on the outcomes of CET. The results showed that the CET of females was always 1.12-1.29 times that of males. In addition, the CET after wearing face masks was 28.28-52.37 times as long as before. The working time can be determined based on the CET results of male workers wearing face masks exposed to the inverted-umbrella aeration tank (14.73-550.98 min for U.S. EPA benchmark and 55.07-1972.24 min for WHO benchmark). In each scenario, the variable parameter exposure concentration (ec) always showed the most influence on the CET results. After wearing the face masks, the removal fraction by employing face masks also had a significant effect on the results, only second to ec. Therefore, the wearing of face mask is the most convenient and effective measure to prolong the CET. Furthermore, practical methods to reducing bioaerosol concentration in WWTPs exposure are also necessary to extend CET and safeguard worker health. This study enriches the application range of reverse quantitative microbial risk assessment framework and provides theoretical support for stakeholders to establish reasonable working time threshold guidelines, and practical method and novel perspective to protect the on-site health risks of sewage workers exposing to various facilities.

9.
Heliyon ; 10(12): e32743, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975171

RESUMEN

The pathogenesis of schizophrenia (SCZ) is heavily influenced by genetic factors. Ring finger protein 4 (RNF4) and squamous cell carcinoma antigen recognized by T cells 3 (SART3) are thought to be involved in nervous system growth and development via oxidative stress pathways. Moreover, they have previously been linked to SCZ. Yet the role of RNF4 and SART3 in SCZ remains unclear. Here, we investigated how these two genes are involved in SCZ by studying their variants observed in patients. We first observed significantly elevated mRNA levels of RNF4 and SART3 in the peripheral blood in both first-episode (n = 30) and chronic (n = 30) SCZ patients compared to controls (n = 60). Next, we targeted-sequenced three single nucleotide polymorphisms (SNPs) in SART3 and six SNPs in RNF4 for association with SCZ using the genomic DNA extracted from peripheral blood leukocytes from SCZ participants (n = 392) and controls (n = 572). We observed a combination of SNPs that included rs1203860, rs2282765 (both in RNF4), and rs2287550 (in SART3) was associated with increased risk of SCZ, suggesting common pathogenic mechanisms between these two genes. We then conducted experiments in HEK293T cells to better understand the interaction between RNF4 and SART3. We observed that SART3 lowered the expression of RNF4 through ubiquitination and downregulated the expression of nuclear factor E2-related factor 2 (NRF2), a downstream factor of RNF4, implicating the existence of a possible shared regulatory mechanism for RNF4 and SART3. In conclusion, our study provides evidence that the interaction between RNF4 and SART3 contributes to the risk of SCZ. The findings shed light on the underlying molecular mechanisms of SCZ and may lead to the development of new therapies and interventions for this disorder.

10.
BMC Med Educ ; 24(1): 705, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943116

RESUMEN

BACKGROUND: Entrustable Professional Activities (EPA)-based assessment is easily and intuitively used in evaluating the learning outcomes of competency-based medical education (CBME). This study aimed to develop an EPA for occupational therapy focused on providing health education and consultation (TP-EPA3) and examine its validity. METHODS: Nineteen occupational therapists who had completed online training on the EQual rubric evaluation participated in this study. An expert committee identified six core EPAs for pediatric occupational therapy. TP-EPA3 was developed following the EPA template and refined through consensus meetings. The EQual rubric, a 14-item, five-point criterion-based anchor system, encompassing discrete units of work (DU), entrustable, essential, and important tasks of the profession (EEIT), and curricular role (CR), was used to evaluate the quality of TP-EPA3. Overall scores below 4.07, or scores for DU, EEIT, and CR domains below 4.17. 4.00, and 4.00, respectively, indicate the need for modifications. RESULTS: The TP-EPA3 demonstrated good validity, surpassing the required cut-off score with an average overall EQual score of 4.21 (SD = 0.41). Specific domain scores for DU, EEIT, and CR were 3.90 (SD = 0.69), 4.46 (SD = 0.44), and 4.42 (SD = 0.45), respectively. Subsequent revisions clarified observation contexts, enhancing specificity and focus. Further validation of the revised TP-EPA3 and a thorough examination of its reliability and validity are needed. CONCLUSION: The successful validation of TP-EPA3 suggests its potential as a valid assessment tool in occupational therapy education, offering a structured approach for developing competency in providing health education and consultation. This process model for EPA development and validation can guide occupational therapists in creating tailored EPAs for diverse specialties and settings.


Asunto(s)
Competencia Clínica , Educación Basada en Competencias , Terapia Ocupacional , Humanos , Terapia Ocupacional/educación , Competencia Clínica/normas , Reproducibilidad de los Resultados , Evaluación Educacional , Educación en Salud , Derivación y Consulta/normas , Curriculum , Masculino , Femenino
11.
Nanomicro Lett ; 16(1): 210, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842604

RESUMEN

Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s-1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.

12.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702866

RESUMEN

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Electroacupuntura , Interleucina-22 , Interleucinas , Degeneración del Disco Intervertebral , Janus Quinasa 2 , Núcleo Pulposo , Ratas Sprague-Dawley , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citología , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Ratas , Interleucinas/metabolismo , Interleucinas/genética , Masculino , Humanos , Vértebras Cervicales
13.
Nat Commun ; 15(1): 4242, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762562

RESUMEN

P-type Fe3CoSb12-based skutterudite thin films are successfully fabricated, exhibiting high thermoelectric performance, stability, and flexibility at medium-to-high temperatures, based on preparing custom target materials and employing advanced pulsed laser deposition techniques to address the bonding challenge between the thin films and high-temperature flexible polyimide substrates. Through the optimization of fabrication processing and nominal doping concentration of Ce, the thin films show a power factor of >100 µW m-1 K-2 and a ZT close to 0.6 at 653 K. After >2000 bending cycle tests at a radius of 4 mm, only a 6 % change in resistivity can be observed. Additionally, the assembled p-type Fe3CoSb12-based flexible device exhibits a power density of 135.7 µW cm-2 under a temperature difference of 100 K with the hot side at 623 K. This work fills a gap in the realization of flexible thermoelectric devices in the medium-to-high-temperature range and holds significant practical application value.

14.
J Affect Disord ; 359: 333-341, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38801920

RESUMEN

BACKGROUND: Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS: The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS: The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS: These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS: How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.


Asunto(s)
Trastorno Depresivo Mayor , Modelos Animales de Enfermedad , Microglía , Animales , Ratones , Microglía/metabolismo , Glicosilación , Trastorno Depresivo Mayor/metabolismo , Masculino , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Depresión/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo
15.
Front Pediatr ; 12: 1349175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646509

RESUMEN

Objectives: To evaluate serial tissue Doppler cardiac imaging (TDI) in the evolution of bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH) among extremely preterm infants. Design: Prospective observational study. Setting: Single-center, tertiary-level neonatal intensive care unit. Patients: Infant born <28 weeks gestation. Main outcome measures: Utility of TDI in the early diagnosis and prediction of BPD-PH and optimal timing for screening of BPD-PH. Results: A total of 79 infants were included. Of them, 17 (23%) had BPD-PH. The mean gestational age was 25.9 ± 1.1 weeks, and mean birth weight was 830 ± 174 g. The BPD-PH group had a high incidence of hemodynamically significant patent ductus arteriosus (83% vs. 56%, p < 0.018), longer oxygen days (96.16 ± 68.09 vs. 59.35 ± 52.1, p < 0.008), and prolonged hospital stay (133.8 ± 45.9 vs. 106.5 ± 37.9 days, p < 0.005). The left ventricular eccentricity index (0.99 ± 0.1 vs. 1.1 ± 0.7, p < 0.01) and the ratio of acceleration time to right ventricular ejection time showed a statistically significant trend from 33 weeks (0.24 ± 0.05 vs. 0.28 ± 0.05, p < 0.05). At 33 weeks, the BPD-PH group showed prolonged isovolumetric contraction time (27.84 ± 5.5 vs. 22.77 ± 4, p < 0.001), prolonged isovolumetric relaxation time (40.3 ± 7.1 vs. 34.9 ± 5.3, p < 0.003), and abnormal myocardial performance index (0.39 ± 0.05 vs. 0.32 ± 0.03, p < 0.001). These differences persisted at 36 weeks after conceptional gestational age. Conclusions: TDI parameters are sensitive in the early evolution of BPD-PH. Diagnostic accuracy can be increased by combining the TDI parameters with conventional echocardiographic parameters. BPD-PH can be recognizable as early as 33-34 weeks of gestation.

16.
Nat Commun ; 15(1): 3426, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654020

RESUMEN

Single-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational "triple treatments" to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm-1 K-2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 µW cm-2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.

17.
Health Place ; 87: 103241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599046

RESUMEN

Addressing health inequality is crucial for fostering healthy city development. However, there is a dearth of literature simultaneously investigating the effects of social deprivation and greenness exposure on mortality risks, as well as how greenness exposure may mitigate the adverse effect of social deprivation on mortality risks from a spatiotemporal perspective. Drawing on socioeconomic, remote sensing, and mortality record data, this study presents spatiotemporal patterns of social deprivation, population weighted greenness exposure, and all-cause and cause-specific mortality in Hong Kong. A Bayesian regression model was applied to investigate the impacts of social deprivation and greenness exposure on mortality and examine how socioeconomic inequalities in mortality may vary across areas with different greenness levels in Hong Kong from 1999 to 2018. We observed a decline in social deprivation (0.67-0.56), and an increase in greenness exposure (0.34-0.41) in Hong Kong during 1999-2018. Areas with high mortality gradually clustered in the Kowloon Peninsula and the northern regions of Hong Kong Island. Adverse impacts of social deprivation on all-cause mortality weakened in recent years (RR from 2009 to 2013: 1.103, 95%CI: 1.051-1.159, RR from 2014 to 2018: 1.041 95%CI: 0.950-1.139), while the protective impacts of greenness exposure consistently strengthened (RR from 1999 to 2003: 0.903, 95%CI: 0.827-0.984, RR from 2014 to 2018: 0.859, 95%CI: 0.763-0.965). Moreover, the adverse effects of social deprivation on mortality risks were found to be higher in areas with lower greenness exposure. These findings provide evidence of associations between social deprivation, greenness exposure, and mortality risks in Hong Kong over the past decades, and highlight the potential of greenness exposure to mitigate health inequalities. Our study provides valuable implications for policymakers to develop a healthy city.


Asunto(s)
Mortalidad , Humanos , Hong Kong/epidemiología , Mortalidad/tendencias , Femenino , Masculino , Teorema de Bayes , Análisis Espacio-Temporal , Factores Socioeconómicos , Persona de Mediana Edad , Adulto , Anciano , Disparidades en el Estado de Salud , Adolescente
18.
BMC Med Inform Decis Mak ; 24(1): 110, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664736

RESUMEN

OBJECTIVE: This study aimed to construct a coronary heart disease (CHD) risk-prediction model in people living with human immunodeficiency virus (PLHIV) with the help of machine learning (ML) per electronic medical records (EMRs). METHODS: Sixty-one medical characteristics (including demography information, laboratory measurements, and complicating disease) readily available from EMRs were retained for clinical analysis. These characteristics further aided the development of prediction models by using seven ML algorithms [light gradient-boosting machine (LightGBM), support vector machine (SVM), eXtreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), decision tree, multilayer perceptron (MLP), and logistic regression]. The performance of this model was assessed using the area under the receiver operating characteristic curve (AUC). Shapley additive explanation (SHAP) was further applied to interpret the findings of the best-performing model. RESULTS: The LightGBM model exhibited the highest AUC (0.849; 95% CI, 0.814-0.883). Additionally, the SHAP plot per the LightGBM depicted that age, heart failure, hypertension, glucose, serum creatinine, indirect bilirubin, serum uric acid, and amylase can help identify PLHIV who were at a high or low risk of developing CHD. CONCLUSION: This study developed a CHD risk prediction model for PLHIV utilizing ML techniques and EMR data. The LightGBM model exhibited improved comprehensive performance and thus had higher reliability in assessing the risk predictors of CHD. Hence, it can potentially facilitate the development of clinical management techniques for PLHIV care in the era of EMRs.


Asunto(s)
Enfermedad Coronaria , Infecciones por VIH , Aprendizaje Automático , Humanos , Persona de Mediana Edad , Masculino , Femenino , Medición de Riesgo/métodos , Adulto , Registros Electrónicos de Salud , Anciano
19.
Anal Chim Acta ; 1299: 342422, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38499425

RESUMEN

BACKGROUND: Ferroptosis, as a novel form of cell death, is becoming one of the hot topics in cancer treatment research. It differs from necrosis and autophagy in that it involves the accumulation of lipid peroxides and is triggered by iron dependency. Recent studies have suggested that this mechanism may alter the viscosity or structure of lipid droplets (LDs). The relationship between LDs viscosity and ferroptosis remains an active area of research with limited reports at present. Additionally, there is a lack of effective anticancer drugs targeting the ferroptosis pathway to promote ferroptosis in tumour cells. Therefore, the development of tools to detect viscosity changes during ferroptosis and targeted therapeutic strategies is of great significance. RESULTS: By coupling 1,3-indandione with naphthalimide, including decamethylamine as a LDs recognition group, we designed and synthesized an environmental fluorescent probe that induces intramolecular charge transfer (TICT) effects. Notably, the diffusion and transport of intracellular substances may be affected in highly viscous environments. Under such conditions, intracellular iron ions may accumulate, leading to peroxide production and cellular damage, which can trigger ferroptosis. Therefore, WD-1 achieved excellent in situ bioimaging of LDs targeting and its viscosity during ferroptosis in HeLa cells and zebrafish. Furthermore, it was observed that WD-1 effectively differentiated between malignant and normal cells during this process, highlighting its potential significance in distinguishing cellular states. In addition, we used the antitumour drug paclitaxel to study ferroptosis in cancer cells. These findings not only provide an excellent tool for the development of the ferroptosis response, but also are crucial for understanding the biological properties of LDs during the ferroptosis response. SIGNIFICANCE AND NOVELTY: Based on a powerful tool of fluorescent probe with in vivo bioimaging, we developed WD-1 to track the impact of paclitaxel on the process of ferroptosis in living cells. Therefore, we preliminarily believe that paclitaxel may affect the occurrence of ferroptosis and control apoptosis in cancer cells. These findings not only serve as an exceptional tool for advancing our understanding of the ferroptosis response, but furthermore play a vital role in comprehending the biological characteristics of LDs in relation to ferroptosis.


Asunto(s)
Ferroptosis , Gotas Lipídicas , Humanos , Animales , Colorantes Fluorescentes , Células HeLa , Viscosidad , Pez Cebra , Hierro , Paclitaxel/farmacología
20.
ACS Appl Mater Interfaces ; 16(14): 18236-18244, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536118

RESUMEN

Hydrogels play a pivotal role in the realm of iontronics, contributing to the realization of futuristic human-machine interactions. The electric double layer (EDL) between the hydrogel and electrode provides an essential ionic-electronic coupling interface. While prior investigations primarily delved into elucidating the formation mechanism of the EDL, our study shifts the focus to showcasing the current generation through the mechanical modulation of the EDL at the hydrogel-metal interfaces. The dynamic EDL was constructed by the mechano-driven contact-separation process between the polyacrylamide (PAAm) hydrogel and Au. Influencing factors on the dynamic regulation of the EDL such as ion concentration, types of salt, contact-separation frequency, and deformation degree were investigated. Dehydration usually limits the practical applications of hydrogels, and it is a long-standing and difficult problem. However, it seemed to be able to slow the EDL formation process here, resulting in a sustained continuous direct current signal output. Such hydrogel iontronics could rectify the displacement electronic current of a triboelectric nanogenerator by the ionic current. The directional migration of ions could be further enhanced by using charge-collecting metals with different work functions, for example, Au and Al. It offers a paradigm to enable ionic rectification that could be seamlessly incorporated into electronic systems, ushering in a new era for efficient energy harvesting and biomimetic nervous systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...