Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0306142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954698

RESUMEN

Developing T1-weighted magnetic resonance imaging (MRI) contrast agents with enhanced biocompatibility and targeting capabilities is crucial owing to concerns over current agents' potential toxicity and suboptimal performance. Drawing inspiration from "biomimetic camouflage," we isolated cell membranes (CMs) from human glioblastoma (T98G) cell lines via the extrusion method to facilitate homotypic glioma targeting. At an 8:1 mass ratio of ferric chloride hexahydrate to gallic acid (GA), the resulting iron (Fe)-GA nanoparticles (NPs) proved effective as a T1-weighted MRI contrast agent. T98G CM-coated Fe-GA NPs demonstrated improved homotypic glioma targeting, validated through Prussian blue staining and in vitro MRI. This biomimetic camouflage strategy holds promise for the development of targeted theranostic agents in a safe and effective manner.


Asunto(s)
Medios de Contraste , Ácido Gálico , Imagen por Resonancia Magnética , Ácido Gálico/química , Humanos , Imagen por Resonancia Magnética/métodos , Línea Celular Tumoral , Medios de Contraste/química , Hierro/química , Materiales Biomiméticos/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Nanopartículas/química , Compuestos Férricos/química , Membrana Celular/metabolismo
2.
Front Neuroanat ; 16: 893953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847828

RESUMEN

Purpose: To investigate the application value of 3D arterial spin labeling (3D-ASL) for evaluating distal limb ischemic preconditioning to improve acute ischemic stroke (AIS) perfusion. Materials and Methods: A total of 40 patients with AISs treated in our hospital from January 2020 to December 2020 were recruited, and 15 healthy individuals who were examined in our hospital during the same period were included as the control group; all of these participants were scored on the National Institutes of Health Stroke Scale (NIHSS) and examined by MRI. Sequences included conventional sequences, diffusion-weighted imaging (DWI), magnetic resonance angiography (MRA), and 3D-ASL, and cerebral infarct volume and cerebral blood flow (CBF) in the area of the infarct lesion were measured. After 3 months of treatment, patients with AIS were scored on the modified Rankin Scale (mRS) and divided into good prognosis and poor prognosis groups. In total, 55 adult male Sprague-Dawley rats were divided randomly into three groups: 20 in the middle cerebral artery occlusion (MCAO) group, 20 in the MCAO + limb remote ischemic preconditioning (LRP) group, and 15 in the sham group. In total, 48 h after the procedures, conventional MRI, DWI, and 3D-ASL sequence data were collected, and 2,3,5-trphenyltetrazolium chloride monohydrate (TTC) staining and behavioral scoring were performed. CBF was recorded in the infarct lesion area and the corresponding contralateral area, and the affected/contralateral relative values (rCBF) were calculated to compare the differences in rCBF between different groups. The pathological changes in brain tissues were observed by HE staining, and the expression of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in brain tissues was detected by immunofluorescence and real-time quantitative polymerase chain reaction (RT-qPCR). The protein expression of VEGF was detected by western blotting. Results: Hypertension and internal carotid atherosclerosis are high-risk factors for ischemic stroke, and CBF values in the infarct area are significantly lower than those in the corresponding areas on the contralateral side. NIHSS and mRS scores and CBF values have higher specificity and sensitivity for the prognosis of patients with AIS. LRP significantly reduces the infarct area, improves behavioral deficits in rats with cerebral ischemia, reduces neurological injury and histological damage, protects vascular structures, and promotes neovascularization. In addition, 3D-ASL showed a significant increase in brain tissue perfusion in the ischemic area after LRP, and the expression of VEGF and CD31 showed a significant positive correlation with CBF values. Conclusion: Three dimensional (3D) ASL can be used to evaluate LRP to improve stroke perfusion, and its protective effect may be closely related to LRP-induced vascular regeneration.

3.
Front Neurosci ; 16: 1048429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605551

RESUMEN

Purpose: To assess brain damage in a rat model of cerebral ischemia based on apparent diffusion coefficient (ADC) data obtained from multi-high b-values and evaluate the relationship between Aquaporin 4 (AQP4) expression and ADC. Methods: Thirty eight male Sprague-Dawley rats were randomized into two groups: (1) sham controls (n = 6) and (2) cerebral ischemia (successful model, n = 19). All rats underwent diffusion-weighted imaging (DWI) with both standard b-values and multi-high b-values (2,500-4,500 s/mm2) using a 3.0-T device. Standard ADC (ADCst) maps and multi-high b-value ADCs (ADCmh) were calculated, respectively. Aquaporin 4 expression was quantified using Western blot. Relative values of ADCst and ADCmh, AQP4 expression were compared between the sham group and the ischemia group. Correlations between ADC values and AQP4 expression were evaluated. Results: At 0.5 h after suture insertion, the value of ADCmh on the lesion was obviously decreased, and there was no difference in lesion volume when compared with ADCst. After reperfusion, besides similar regions where ADCst values decreased, we also found additional large values on ADCmh within the cortex of the ipsilateral side or surrounding the lesion. The lesion evolution of the large value on ADCmh was quite different from other indicators. But the total ADCmh values were still significantly associated with ADCst. The AQP4 protein expression level was appreciably increased after middle cerebral artery occlusion (MCAO), but there was no correlation between AQP4 expression either with ADCmh or ADCst. Conclusion: We found the large values on ADCmh during the progression of cerebral infarction is varied, but there was no correlation between ADCmh values and AQP4 expression. ADCmh may indicate the heterogeneity of ischemia lesions, but the underlying pathological basis should be further explored.

4.
Metab Brain Dis ; 30(2): 483-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24771108

RESUMEN

The protective effect of ischemic postconditioning (IPostC) against stroke has been well-established, and the underlying mechanisms are known to involve inhibited-inflammation and free radical production. Nevertheless, how IPostC affects protein expression of iNOS, nitrotyrosine, and COX-2 has not been characterized. In addition, the role of the galectin-9/Tim-3 cell signaling pathway--a novel inflammatory pathway--in IPostC has not been studied. We examined whether iNOS, nitrotyrosine, and COX-2, as well as galectin-9/Tim-3 are involved in the protective effects of IpostC in a rat focal ischemia model. Western blot and confocal immunofluoresent staining results indicate that IPostC significantly inhibited Tim-3 expression, and that galectin-9 expression was also inhibited. In addition, IPostC attenuated production of iNOS and nitrotyrosine, but not COX-2, suggesting that IPostC has distinct effects on these inflammatory factors. Furthermore, the inflammation inhibitor minocycline blocked Tim-3 and iNOS expression induced by stroke. Taken together, we show that the galectin-9/Tim-3 cell signaling pathway is involved in inflammation induced by stroke, and IPostC may reduce infarction by attenuating this novel pathway as well as the inflammatory factors iNOS and nitrotyrosine, but not COX-2.


Asunto(s)
Isquemia Encefálica/fisiopatología , Poscondicionamiento Isquémico , Óxido Nítrico Sintasa de Tipo II/fisiología , Receptores de Superficie Celular/fisiología , Animales , Antiinflamatorios/farmacología , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Masculino , Minociclina/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
5.
PLoS One ; 8(3): e59602, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555048

RESUMEN

Stroke-induced immunodepression (SIID) results when T cell and non-T immune cells, such as B cells, NK cells and monocytes, are reduced in the peripheral blood and spleen after stroke. We investigated the hypothesis that T cells are required for the reductions in non-T cell subsets observed in SIID, and further examined a potential correlation between lymphopenia and High-mobility group protein B1 (HMGB1) release, a protein that regulates inflammation and immunodepression. Our results showed that focal ischemia resulted in similar cortical infarct sizes in both wild type (WT) Sprague Dawley (SD) rats and nude rats with a SD genetic background, which excludes the possibility of different infarct sizes affecting SIID. In addition, the numbers of CD68-positive macrophages in the ischemic brain did not differ between WT and nude rats. Numbers of total peripheral blood mononuclear cells (PBMCs) or splenocytes and lymphocyte subsets, including T cells, CD4(+) or CD8(+) T cells, B cells and monocytes in the blood and spleen, were decreased after stroke in WT rats. In nude rats, however, the total number of PBMCs and absolute numbers of NK cells, B cells and monocytes were increased in the peripheral blood after stroke; nude rats are athymic therefore they have few T cells present. Adoptive transfer of WT splenocytes into nude rats before stroke resulted in lymphopenia after stroke similar to WT rats. Moreover, in vitro T cell proliferation stimulated by Concanavalin A was significantly inhibited in WT rats as well as in nude rats receiving WT splenocyte adoptive transfer, suggesting that T cell function is indeed inhibited after stroke. Lastly, we demonstrated that stroke-induced lymphopenia is associated with a reduction in HMGB1 release in the peripheral blood. In conclusion, T cells are required for stroke-induced reductions in non-T immune cells and they are the most crucial lymphocytes for SIID.


Asunto(s)
Linfopenia/etiología , Linfopenia/inmunología , Accidente Cerebrovascular/complicaciones , Linfocitos T/patología , Animales , Infarto Encefálico/etiología , Infarto Encefálico/inmunología , Infarto Encefálico/patología , Cruzamiento , Proliferación Celular/efectos de los fármacos , Ácido Glicirrínico/farmacología , Proteína HMGB1/antagonistas & inhibidores , Proteína HMGB1/sangre , Proteína HMGB1/metabolismo , Linfopenia/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratas , Especificidad de la Especie , Bazo/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trasplantes
6.
PLoS One ; 7(2): e30892, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22347410

RESUMEN

We recently demonstrated that limb remote preconditioning (LRP) protects against focal ischemia measured 2 days post-stroke. Here, we studied whether LRP provides long-term protection and improves neurological function. We also investigated whether LRP transmits its protective signaling via the afferent nerve pathways from the preconditioned limb to the ischemic brain and whether inflammatory factors are involved in LRP, including the novel galectin-9/Tim-3 inflammatory cell signaling pathway, which induces cell death in lymphocytes. LRP in the left hind femoral artery was performed immediately before stroke. LRP reduced brain injury size both at 2 days and 60 days post-stroke and improved behavioral outcomes for up to 2 months. The sensory nerve inhibitors capsaicin and hexamethonium, a ganglion blocker, abolished the protective effects of LRP. In addition, LRP inhibited edema formation and blood-brain barrier (BBB) permeability measured 2 days post-stroke. Western blot and immunostaining analysis showed that LRP inhibited protein expression of both galectin-9 and T-cell immunoglobulin domain and mucin domain 3 (Tim-3), which were increased after stroke. In addition, LRP decreased iNOS and nitrotyrosine protein expression after stroke. In conclusion, LRP executes long-term protective effects against stroke and may block brain injury by inhibiting activities of the galectin-9/Tim-3 pathway, iNOS, and nitrotyrosine.


Asunto(s)
Extremidades/fisiopatología , Inflamación/fisiopatología , Precondicionamiento Isquémico/métodos , Accidente Cerebrovascular/prevención & control , Animales , Galectinas , Óxido Nítrico Sintasa de Tipo II , Ratas , Receptores de Superficie Celular , Factores de Tiempo , Tirosina/análogos & derivados
7.
Brain Res ; 1288: 88-94, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19631625

RESUMEN

Remote ischemic postconditioning (RIP) refers to an ischemia conducted in a distant organ that protects against a prior ischemia in another organ. We tested whether RIP protects against focal ischemia in the rat brain. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery combined with a 30-min occlusion of the bilateral common carotid arteries (CCA) in male rats. After CCA release, RIP was generated by three cycles of 15-min occlusion/15-min release of the left-hind femoral artery. The results showed that rapid RIP performed immediately after CCA release reduced infarction by 67% measured at 2 days after stroke. In addition, delayed RIP initiated as late as 3 h, but not 6 h, still robustly reduced infarction by 43% 2 days after stroke. RIP's protective effect was abolished by injecting the protein synthesis inhibitor, cycloheximide, and the afferent nerve blocker, capsaicin, suggesting that RIP blocks ischemic injury by modulating protein synthesis and nerve activity. Nevertheless, rapid RIP did not reduce infarction size 2 months after stroke while it ameliorated the outcome of the behavioral test. In conclusion, RIP attenuates brain injury after focal ischemia.


Asunto(s)
Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Corteza Cerebral/patología , Miembro Posterior/irrigación sanguínea , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/prevención & control , Análisis de Varianza , Animales , Isquemia Encefálica/fisiopatología , Capsaicina/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Cicloheximida/farmacología , Infarto de la Arteria Cerebral Media/fisiopatología , Isquemia , Masculino , Destreza Motora , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...