Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Bone Oncol ; 48: 100626, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39290649

RESUMEN

Objective: Bone tumors, known for their infrequent occurrence and diverse imaging characteristics, require precise differentiation into benign and malignant categories. Existing diagnostic approaches heavily depend on the laborious and variable manual delineation of tumor regions. Deep learning methods, particularly convolutional neural networks (CNNs), have emerged as a promising solution to tackle these issues. This paper introduces an enhanced deep-learning model based on AlexNet to classify femoral bone tumors accurately. Methods: This study involved 500 femoral tumor patients from July 2020 to January 2023, with 500 imaging cases (335 benign and 165 malignant). A CNN was employed for automated classification. The model framework encompassed training and testing stages, with 8 layers (5 Conv and 3 FC) and ReLU activation. Essential architectural modifications included Batch Normalization (BN) after the first and second convolutional filters. Comparative experiments with various existing methods were conducted to assess algorithm performance in tumor staging. Evaluation metrics encompassed accuracy, precision, sensitivity, specificity, F-measure, ROC curves, and AUC values. Results: The analysis of precision, sensitivity, specificity, and F1 score from the results demonstrates that the method introduced in this paper offers several advantages, including a low feature dimension and robust generalization (with an accuracy of 98.34 %, sensitivity of 97.26 %, specificity of 95.74 %, and an F1 score of 96.37). These findings underscore its exceptional overall detection capabilities. Notably, when comparing various algorithms, they generally exhibit similar classification performance. However, the algorithm presented in this paper stands out with a higher AUC value (AUC=0.848), signifying enhanced sensitivity and more robust specificity. Conclusion: This study presents an optimized AlexNet model for classifying femoral bone tumor images based on convolutional neural networks. This algorithm demonstrates higher accuracy, precision, sensitivity, specificity, and F1-score than other methods. Furthermore, the AUC value further confirms the outstanding performance of this algorithm in terms of sensitivity and specificity. This research makes a significant contribution to the field of medical image classification, offering an efficient automated classification solution, and holds the potential to advance the application of artificial intelligence in bone tumor classification.

2.
Genes Dis ; 11(6): 101145, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39281831

RESUMEN

The pathogenic effects of type 2 diabetes on bone tissue are gaining attention, but the cellular and molecular mechanisms underlying osteoimmunology are still unclear in diabetes-related bone diseases. We delineated the single-cell transcriptome of bone marrow cells from both wide type and type 2 diabetes mice, which provided the first detailed global profile of bone marrow cells and revealed a distinct bone immune microenvironment at the genetic level under type 2 diabetic condition. It was observed that osteoclast activity was inhibited due to a dysregulated cytokine network, which ultimately led to decreased osteoclast formation and differentiation. In type 2 diabetes mice, a specific C d 36 + cluster (cluster 18, monocytes/macrophages 2) was identified as the precursor of osteoclasts with diminished differentiation potential. AP-1 was demonstrated to be the key transcription factor in the underlying mechanism.

4.
J Magn Reson Imaging ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010746

RESUMEN

BACKGROUND: According to the T1ρ value of nucleus pulposus, our previous study has found that intervertebral disc degeneration (IDD) can be divided into three phases based on T1ρ-MR, which is helpful for the selection of biomaterial treatment timing. However, the routine MR sequences for patients with IDD are T1- and T2-MR, T1ρ-MR is not commonly used due to long scanning time and extra expenses, which limits the application of T1ρ-MR based IDD phases. PURPOSE: To build a deep learning model to achieve the classification of T1ρ-MR based IDD phases from routine T1-MR images. STUDY TYPE: Retrospective. POPULATION: Sixty (M/F: 35/25) patients with low back pain or lower limb radiculopathy are randomly divided into training (N = 50) and test (N = 10) sets. FIELD STRENGTH/SEQUENCES: 1.5 T MR scanner; T1-, T2-, and T1ρ-MR sequence (spin echo). ASSESSMENT: The T1ρ values of the nucleus pulposus in intervertebral discs (IVDs) were measured. IVDs were divided into three phases based on the mean T1ρ value: pre-degeneration phase (mean T1ρ value >110 msec), rapid degeneration phase (mean T1ρ value: 80-110 msec), and late degeneration phase (mean T1ρ value <80 msec). After measurement, the T1ρ values, phases, and levels of IVDs were input into the model as labels. STATISTICAL TESTS: Intraclass correlation coefficient, area under the receiver operating characteristic curve (AUC), F1-score, accuracy, precision, and recall (P < 0.05 was considered significant). RESULTS: In the test dataset, the model achieved a mean average precision of 0.996 for detecting IVD levels. The diagnostic accuracy of the T1ρ-MR based IDD phases was 0.840 and the AUC was 0.871, the average AUC of 5-folds cross validation was 0.843. DATA CONCLUSION: The proposed deep learning model achieved the classification of T1ρ-MR based IDD phases from routine T1-MR images, which may provide a method to facilitate the application of T1ρ-MR in IDD. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

5.
Nat Commun ; 15(1): 5460, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937462

RESUMEN

Developing superporous hemostatic sponges with simultaneously enhanced permeability and mechanical properties remains challenging but highly desirable to achieve rapid hemostasis for non-compressible hemorrhage. Typical approaches to improve the permeability of hemostatic sponges by increasing porosity sacrifice mechanical properties and yield limited pore interconnectivity, thereby undermining the hemostatic efficacy and subsequent tissue regeneration. Herein, we propose a temperature-assisted secondary network compaction strategy following the phase separation-induced primary compaction to fabricate the superporous chitosan sponge with highly-interconnected porous structure, enhanced blood absorption rate and capacity, and fatigue resistance. The superporous chitosan sponge exhibits rapid shape recovery after absorbing blood and maintains sufficient pressure on wounds to build a robust physical barrier to greatly improve hemostatic efficiency. Furthermore, the superporous chitosan sponge outperforms commercial gauze, gelatin sponges, and chitosan powder by enhancing hemostatic efficiency, cell infiltration, vascular regeneration, and in-situ tissue regeneration in non-compressible organ injury models, respectively. We believe the proposed secondary network compaction strategy provides a simple yet effective method to fabricate superporous hemostatic sponges for diverse clinical applications.


Asunto(s)
Quitosano , Hemostasis , Hemostáticos , Permeabilidad , Animales , Porosidad , Quitosano/química , Hemostáticos/química , Hemostáticos/farmacología , Porcinos , Hemostasis/fisiología , Hemorragia/terapia , Masculino
6.
Bone ; 186: 117135, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38821386

RESUMEN

OBJECTIVE: The association of coffee and tea consumption with osteoporosis is highly controversial, and few studies have focused on the combined effects of the two beverages. This study aimed to investigate the independent and combined associations of coffee and tea consumption with osteoporosis risk. METHODS: A prospective cohort study involving 487,594 participants aged 38-73 years from the UK Biobank was conducted. Participants with reported coffee and tea consumption and without osteoporosis at baseline were included. Coffee and tea consumption were assessed via a touch-screen questionnaire at baseline. Newly diagnosed osteoporosis during the follow-up period, defined based on ICD-10 codes (M80-M82), was the primary outcome. Cox regression analyses were utilized to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). Dose-effect associations were assessed using restricted cubic spline analysis. RESULTS: During a median follow-up of 12.8 years, 15,211 cases of osteoporosis were identified. Compared to individuals without coffee or tea consumption, drinking coffee was associated with an HR of 0.93 (95 % CI: 0.89-0.96), and tea consumption with an HR of 0.86 (95 % CI: 0.83-0.90). Continuous trends were significant for both coffee and tea consumption, showing non-linear associations with osteoporosis incidence. Moderate consumption, such as 1-2 cups of coffee or 3-4 cups of tea per day, was associated with a lower incidence of osteoporosis, with HRs of 0.9 (95 % CI: 0.86-0.94) and 0.85 (95 % CI: 0.81-0.90), respectively. Additionally, combined coffee and tea consumption displayed a U-shaped association with osteoporosis risk, with the lowest risk observed in individuals who consumed 1-2 cups of both beverages daily, with an HR of 0.68 (95 % CI: 0.61-0.75). CONCLUSION: Our findings highlight the potential benefits of moderate coffee and tea consumption in reducing the risk of osteoporosis.


Asunto(s)
Café , Osteoporosis , , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Café/efectos adversos , Osteoporosis/epidemiología , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Té/efectos adversos , Biobanco del Reino Unido , Reino Unido/epidemiología
7.
Bioact Mater ; 35: 135-149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38312519

RESUMEN

Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-ß1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.

8.
Adv Mater ; 36(15): e2307176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295393

RESUMEN

Cellular energetics plays an important role in tissue regeneration, and the enhanced metabolic activity of delivered stem cells can accelerate tissue repair and regeneration. However, conventional hydrogels with limited network cell adaptability restrict cell-cell interactions and cell metabolic activities. In this work, it is shown that a cell-adaptable hydrogel with high network dynamics enhances the glucose uptake and fatty acid ß-oxidation of encapsulated human mesenchymal stem cells (hMSCs) compared with a hydrogel with low network dynamics. It is further shown that the hMSCs encapsulated in the high dynamic hydrogels exhibit increased tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) biosynthesis via an E-cadherin- and AMP-activated protein kinase (AMPK)-dependent mechanism. The in vivo evaluation further showed that the delivery of MSCs by the dynamic hydrogel enhanced in situ bone regeneration in an animal model. It is believed that the findings provide critical insights into the impact of stem cell-biomaterial interactions on cellular metabolic energetics and the underlying mechanisms.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Animales , Humanos , Regeneración Ósea , Comunicación Celular , Proliferación Celular , Diferenciación Celular
9.
BMC Public Health ; 24(1): 233, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243159

RESUMEN

OBJECTIVE: The association between Metabolic Syndrome (MetS), its components, and the risk of osteoarthritis (OA) has been a topic of conflicting evidence in different studies. The aim of this present study is to investigate the association between MetS, its components, and the risk of OA using data from the UK Biobank. METHODS: A prospective cohort study was conducted in the UK Biobank to assess the risk of osteoarthritis (OA) related to MetS. MetS was defined according to the criteria set by the International Diabetes Federation (IDF). Additionally, lifestyle factors, medications, and the inflammatory marker C-reactive protein (CRP) were included in the model. Cox proportional hazards regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CI). The cumulative risk of OA was analyzed using Kaplan-Meier curves and log-rank tests. To explore potential nonlinear associations between MetS components and OA risk, a restricted cubic splines (RCS) model was employed. In addition, the polygenic risk score (PRS) of OA was calculated to characterize individual genetic risk. RESULTS: A total of 45,581 cases of OA were identified among 370,311 participants, with a median follow-up time of 12.48 years. The study found that individuals with MetS had a 15% higher risk of developing OA (HR = 1.15, 95%CI:1.12-1.19). Additionally, central obesity was associated with a 58% increased risk of OA (HR = 1.58, 95%CI:1.5-1.66), while hyperglycemia was linked to a 13% higher risk (HR = 1.13, 95%CI:1.1-1.15). Dyslipidemia, specifically in triglycerides (HR = 1.07, 95%CI:1.05-1.09) and high-density lipoprotein (HR = 1.05, 95%CI:1.02-1.07), was also found to be slightly associated with OA risk. When stratified by PRS, those in the high PRS group had a significantly higher risk of OA compared to those with a low PRS, whereas no interaction was found between MetS and PRS on OA risks. Furthermore, the presence of MetS significantly increased the risk of OA by up to 35% in individuals with elevated CRP levels (HR = 1.35, 95% CI:1.3-1.4). CONCLUSION: MetS and its components have been found to be associated with an increased risk of OA, particularly in individuals with elevated levels of CRP. These findings highlight the significance of managing MetS as a preventive and intervention measure for OA.


Asunto(s)
Síndrome Metabólico , Osteoartritis , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/complicaciones , Estudios Prospectivos , Bancos de Muestras Biológicas , Biobanco del Reino Unido , Osteoartritis/epidemiología , Osteoartritis/complicaciones , Factores de Riesgo , Proteína C-Reactiva
10.
Eur Radiol ; 34(2): 736-744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37581658

RESUMEN

OBJECTIVE: To investigate the feasibility and effectiveness of applying intraoperative ultrasound (IOUS) to evaluate spinal canal expansion in patients undergoing French-door cervical laminoplasty (FDCL). MATERIALS AND METHODS: Twenty-five patients who underwent FDCL for multilevel degenerative cervical myelopathy were prospectively recruited. Formulae describing the relationship between laminoplasty opening angle (LOA) and laminoplasty opening size, the increase in sagittal canal diameter and the spinal canal area were deduced with trigonometric functions. The LOA was measured with IOUS imaging during surgery, and other spinal canal parameters were assessed. Actual spinal canal enlargement was verified on postoperative CT images. Linear correlation analysis and Bland‒Altman analysis were used to evaluate correlation and agreement between the intraoperative and postoperative measurements. RESULTS: The LOA at C5 measured with IOUS was 27.54 ± 3.12°, and it was 27.23 ± 3.02° on postoperative CT imaging. Linear correlation analysis revealed a significant correlation between IOUS and postoperative CT measurements (r = 0.88; p < 0.01). Bland-Altman plots showed good agreement between these two methods, with a mean difference of 0.30°. For other spinal canal expansion parameter measurements, correlation analysis showed a moderate to a high degree of correlation (p < 0.01), and Bland-Altman analysis indicated good agreement. CONCLUSION: In conclusion, during the French-door cervical laminoplasty procedure, application of IOUS can accurately evaluate spinal canal expansion. This innovative method may be helpful in improving surgical accuracy by enabling the operator to measure and determine canal enlargement during surgery, leading to ideal clinical outcomes and fewer postoperative complications. CLINICAL RELEVANCE STATEMENT: The use of intraoperative ultrasonography to assess spinal canal expansion following French-door cervical laminoplasty may improve outcomes for patients undergoing this procedure by providing more accurate measurements of spinal canal expansion. KEY POINTS: • Spinal canal expansion after French-door cervical laminoplasty substantially influences operative prognosis; insufficient or excessive lamina opening may result in unexpected outcomes. • Prediction of spinal canal expansion during surgery was previously impracticable, but based on this study, intraoperative ultrasonography offers an innovative approach and strongly agrees with postoperative CT measurement. • Since this is the first research to offer real-time canal expansion guidance for cervical laminoplasty, it may improve the accuracy of the operation and produce ideal clinical outcomes with fewer postoperative complications.


Asunto(s)
Laminoplastia , Enfermedades de la Médula Espinal , Humanos , Laminoplastia/efectos adversos , Laminoplastia/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Canal Medular/diagnóstico por imagen , Canal Medular/cirugía , Ultrasonografía , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/complicaciones , Estudios Retrospectivos
11.
Front Public Health ; 11: 1225053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841744

RESUMEN

Introduction: Non-communicable diseases (NCDs) represent the leading cause of mortality and disability worldwide. Robust evidence has demonstrated that modifiable lifestyle factors such as unhealthy diet, smoking, alcohol consumption and physical inactivity are the primary causes of NCDs. Although a series of guidelines for the management of NCDs have been published in China, these guidelines mainly focus on clinical practice targeting clinicians rather than the general population, and the evidence for NCD prevention based on modifiable lifestyle factors has been disorganized. Therefore, comprehensive and evidence-based guidance for the risk management of major NCDs for the general Chinese population is urgently needed. To achieve this overarching aim, we plan to develop a series of expert consensuses covering 15 major NCDs on health risk management for the general Chinese population. The objectives of these consensuses are (1) to identify and recommend suitable risk assessment methods for the Chinese population; and (2) to make recommendations for the prevention of major NCDs by integrating the current best evidence and experts' opinions. Methods and analysis: For each expert consensus, we will establish a consensus working group comprising 40-50 members. Consensus questions will be formulated by integrating literature reviews, expert opinions, and an online survey. Systematic reviews will be considered as the primary evidence sources. We will conduct new systematic reviews if there are no eligible systematic reviews, the methodological quality is low, or the existing systematic reviews have been published for more than 3 years. We will evaluate the quality of evidence and make recommendations according to the GRADE approach. The consensuses will be reported according to the Reporting Items for Practice Guidelines in Healthcare (RIGHT).


Asunto(s)
Pueblos del Este de Asia , Conductas de Riesgo para la Salud , Humanos , Consumo de Bebidas Alcohólicas , China/epidemiología , Protocolos Clínicos , Consenso , Dieta , Indicadores de Salud , Gestión de Riesgos , Fumar , Salud Pública
12.
Med Image Anal ; 89: 102906, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499333

RESUMEN

Automatic vertebral body contour extraction (AVBCE) from heterogeneous spinal MRI is indispensable for the comprehensive diagnosis and treatment of spinal diseases. However, AVBCE is challenging due to data heterogeneity, image characteristics complexity, and vertebral body morphology variations, which may cause morphology errors in semantic segmentation. Deep active contour-based (deep ACM-based) methods provide a promising complement for tackling morphology errors by directly parameterizing the contour coordinates. Extending the target contours' capture range and providing morphology-aware parameter maps are crucial for deep ACM-based methods. For this purpose, we propose a novel Attractive Deep Morphology-aware actIve contouR nEtwork (ADMIRE) that embeds an elaborated contour attraction term (CAT) and a comprehensive contour quality (CCQ) loss into the deep ACM-based framework. The CAT adaptively extends the target contours' capture range by designing an all-to-all force field to enable the target contours' energy to contribute to farther locations. Furthermore, the CCQ loss is carefully designed to generate morphology-aware active contour parameters by simultaneously supervising the contour shape, tension, and smoothness. These designs, in cooperation with the deep ACM-based framework, enable robustness to data heterogeneity, image characteristics complexity, and target contour morphology variations. Furthermore, the deep ACM-based ADMIRE is able to cooperate well with semi-supervised strategies such as mean teacher, which enables its function in semi-supervised scenarios. ADMIRE is trained and evaluated on four challenging datasets, including three spinal datasets with more than 1000 heterogeneous images and more than 10000 vertebrae bodies, as well as a cardiac dataset with both normal and pathological cases. Results show ADMIRE achieves state-of-the-art performance on all datasets, which proves ADMIRE's accuracy, robustness, and generalization ability.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Cuerpo Vertebral , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética
13.
Orthop Surg ; 14(12): 3349-3357, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36349782

RESUMEN

OBJECTIVE: Although the lamina open angle of making hinges is closely related to the outcomes of French-door laminoplasty (FDL) for treatment of cervical spondylosis, there have been no methods to predict the lamina open angle preoperatively as yet. The aim of this study was to investigate the accuracy of predicting the laminal open angle using our newly designed sharp rongeur, and to compare the postoperative outcomes and complications between the methods of making hinges using the newly designed sharp rongeur and the traditional high-speed micro-drill during the FDL. METHODS: This was a single-center retrospective study. Following the approval of the institutional ethics committee, a total of 39 patients (Male: 28; Female: 11) diagnosed with cervical spondylos who underwent FDL in our institution between January 2018 and May 2019 were enrolled. Patients were divided into two groups based on the method of making hinges (sharp rongeur: 22 cases; high-speed micro-drill: 17 cases). The average age at surgery was 59.1 years (range: 16-85 years). The radiological parameters, clinical outcomes, modified Japanese Orthopaedic Association (mJOA) scale score, and the recovery rate of mJOA were recorded and compared between the groups, respectively. The radiological parameters and clinical measurements at pre- and post-operation stages were compared using the paired-sample t-test, the Wilcoxon signed-rank test, and the Friedman's test, and variables in the two groups were analyzed using an unpaired Student's t-test or a Mann-Whitney U test. RESULTS: The average follow-up period was 20.4 months (range: 14.0-25.9 months), the postoperative open angle was 60.13° ± 3.69° in the rongeur group with 22.78° ± 4.34° of angular enlargement, which was significantly lower than that of 68.96° ± 1.00° in the micro-drill group with 32.75° ± 4.22° of angular enlargement (U = 19.000, p < 0.001). The rongeur group showed a higher fusion rate (34.1% vs 14.7%, χ2  = 11.340, p = 0.001), and a lower fracture rate of the lamina (7.8% vs 25.5%, χ2  = 14.185, p < 0.001) at 1-month post-surgery, compared to the micro-drill group. There were no significant differences in the clinical outcomes and postoperative complications between the two groups (p > 0.05), except in the recovery rate of mJOA scores (0.836 ± 0.138 vs 0.724 ± 0.180, U = 115.000, p = 0.042) and neck disability index (NDI) at the final follow-up (7.55 ± 10.65 vs 14.71 ± 8.72, U = 94.000, p = 0.008). CONCLUSIONS: The special sharp rongeur with a tip angle of 20° could be a preferred method to make hinges during FDL, which can predict the laminal open angle accurately and enlarge it to about 23°, thus reducing the fracture rate and accelerating the bony fusion of hinges compared with the outcomes of the traditional micro-drill method.


Asunto(s)
Laminoplastia , Espondilosis , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Estudios Retrospectivos , Laminoplastia/métodos , Espondilosis/cirugía
14.
Oxid Med Cell Longev ; 2022: 1984742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262281

RESUMEN

Intervertebral disc degeneration (IDD), characterized as decreased proteoglycan content, ossification of endplate, and decreased intervertebral height, is one of the major reasons of low back pain, which seriously affects the quality of life and also brings heavy economic burden. However, the mechanisms leading to IDD and its therapeutic targets have not been fully elucidated. Oxidative stress refers to the imbalance between oxidation and antioxidant systems, between too many products of reactive oxygen species (ROS) and the insufficient scavenging function. Excessive ROS can damage cell lipids, nucleic acids and proteins, which has been proved to be related to the development of a variety of diseases. In recent years, an increasing number of studies have reported that oxidative stress is involved in the pathological process of IDD. Excessive ROS can accelerate the IDD process via inducing the pathological activities, such as inflammation, apoptosis, and senescence. In this review, we focused on pathophysiology and molecular mechanisms of oxidative stress-induced IDD. Moreover, the present review also summarized the possible ideas for the future therapy strategies of oxidative stress-related IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Ácidos Nucleicos , Humanos , Degeneración del Disco Intervertebral/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Disco Intervertebral/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Calidad de Vida , Estrés Oxidativo , Transducción de Señal , Proteoglicanos/metabolismo , Proteoglicanos/uso terapéutico , Ácidos Nucleicos/metabolismo , Lípidos
15.
Exp Mol Med ; 54(10): 1766-1777, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36241865

RESUMEN

The poor survival and low efficiency of neuronal differentiation limits the therapeutic effects of transplanted neural stem cells in the treatment of spinal cord injury. Neurofibromatosis-1 (NF-1) is a tumor suppressor gene that restricts the rapid and abnormal growth and differentiation of neural cells. In the present study, lentiviral vectors were used to knock out NF-1, Ricotr (the core member of mTORC2) or NF-1+Ricotr in neural stem cells in vitro, and the NF-1, Ricotr or NF-1+Ricotr knockout neural stem cells were transplanted at the lesion site in a rat model of spinal cord injury (SCI). We first demonstrated that targeted knockout of NF-1 had an antiapoptotic effect and improved neuronal differentiation by enhancing the mTORC2/Rictor pathway of neural stem cells in vitro. Subsequently, transplanting NF-1 knockout neural stem cells into the injured site sufficiently promoted the tissue repair and functional recovery of rats with spinal cord injury by enhancing the survival and neuronal differentiation of grafted neural stem cells. Collectively, these findings reveal a prominent role of NF-1 in neural stem cell biology, which is an invaluable step forward in enhancing the benefit of neural stem cell-mediated regenerative cell therapy for spinal cord injury and identifies the transplantation of NF-1 knockout neural stem cells as a promising strategy for spinal cord injury.


Asunto(s)
Células-Madre Neurales , Neurofibromatosis , Traumatismos de la Médula Espinal , Ratas , Animales , Diana Mecanicista del Complejo 2 de la Rapamicina , Técnicas de Inactivación de Genes , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Diferenciación Celular/fisiología , Neurofibromatosis/patología , Médula Espinal/patología
16.
Front Cell Dev Biol ; 10: 853688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874831

RESUMEN

Senolytics are a class of drugs that selectively eliminate senescent cells and ameliorate senescence-associated disease. Studies have demonstrated the accumulation of senescent disc cells and the production of senescence-associated secretory phenotype decrease the number of functional cells in degenerative tissue. It has been determined that clearance of senescent cell by senolytics rejuvenates various cell types in several human organs, including the largest avascular structure, intervertebral disc (IVD). The microvasculature in the marrow space of bony endplate (BEP) are the structural foundation of nutrient exchange in the IVD, but to date, the anti-senescence effects of senolytics on senescent vascular endothelial cells in the endplate subchondral vasculature remains unclear. In this study, the relationships between endothelial cellular senescence in the marrow space of the BEP and IVD degeneration were investigated using the aged mice model. Immunofluorescence staining was used to evaluate the protein expression of P16, P21, and EMCN in vascular endothelial cells. Senescence-associated ß-galactosidase staining was used to investigate the senescence of vascular endothelial cells. Meanwhile, the effects of senolytics on cellular senescence of human umbilical vein endothelial cells were investigated using a cell culture model. Preliminary results showed that senolytics alleviate endothelial cellular senescence in the marrow space of BEP as evidenced by reduced senescence-associated secretory phenotype. In the aged mice model, we found decreased height of IVD accompanied by vertebral bone mass loss and obvious changes to the endplate subchondral vasculature, which may lead to the decrease in nutrition transport into IVD. These findings may provide evidence that senolytics can eliminate the senescent cells and facilitate microvascular formation in the marrow space of the BEP. Targeting senescent cellular clearance mechanism to increase nutrient supply to the avascular disc suggests a potential treatment value of senolytics for IVD degenerative diseases.

17.
Eur J Neurol ; 29(1): 217-224, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528341

RESUMEN

BACKGROUND AND PURPOSE: The spinal cord central echo complex (SCCEC) is a special ultrasonography-based intramedullary structure, but its clinical significance in degenerative cervical myelopathy (DCM) is undefined. This study aimed to explore the potential of the SCCEC in predicting postoperative neurological recovery in DCM. METHODS: Thirty-two DCM patients who underwent intraoperative ultrasonography-guided French-door laminoplasty were prospectively enrolled. The modified Japanese Orthopaedic Association (mJOA) score was evaluated preoperatively and 12 months postoperatively. SCCEC width (SCCEC-W), and anteroposterior diameter (APD) and transverse diameter (TD) of the spinal cord were measured on transverse ultrasonographic images, while the tissue widths from anterior and posterior borders of the spinal cord to the SCCEC were measured on sagittal ultrasonographic images. The APD of the spinal cord and occupying rate of the spinal canal were measured on preoperative magnetic resonance imaging (MRI). RESULTS: All patients achieved improvements in mJOA scores, with an average recovery rate (RR) of 68.69 ± 20.22%. Spearman correlation analysis revealed that SCCEC-W, and ratios between the SCCEC-W and APD/TD based on ultrasonography, correlated moderately with mJOA score RR, with coefficients of -0.527, -0.605 and -0.514, respectively. The ratio between SCCEC-W and ultrasonographic TD correlated moderately with preoperative APD of the spinal cord. The MRI measurements and ultrasonography-based tissue widths showed no significant correlation with mJOA score RR. CONCLUSIONS: The SCCEC may have predictive potential as an intraoperative indicator of neurological recovery in treating DCM. SCCEC-W may be related to spinal cord compression in DCM.


Asunto(s)
Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/patología , Vértebras Cervicales/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Médula Espinal/cirugía , Compresión de la Médula Espinal/patología , Compresión de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/patología , Enfermedades de la Médula Espinal/cirugía , Resultado del Tratamiento , Ultrasonografía
18.
Nucleic Acids Res ; 50(D1): D371-D379, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34761274

RESUMEN

Previous studies on enhancers and their target genes were largely based on bulk samples that represent 'average' regulatory activities from a large population of millions of cells, masking the heterogeneity and important effects from the sub-populations. In recent years, single-cell sequencing technology has enabled the profiling of open chromatin accessibility at the single-cell level (scATAC-seq), which can be used to annotate the enhancers and promoters in specific cell types. A comprehensive resource is highly desirable for exploring how the enhancers regulate the target genes at the single-cell level. Hence, we designed a single-cell database scEnhancer (http://enhanceratlas.net/scenhancer/), covering 14 527 776 enhancers and 63 658 600 enhancer-gene interactions from 1 196 906 single cells across 775 tissue/cell types in three species. An unsupervised learning method was employed to sort and combine tens or hundreds of single cells in each tissue/cell type to obtain the consensus enhancers. In addition, we utilized a cis-regulatory network algorithm to identify the enhancer-gene connections. Finally, we provided a user-friendly platform with seven useful modules to search, visualize, and browse the enhancers/genes. This database will facilitate the research community towards a functional analysis of enhancers at the single-cell level.


Asunto(s)
Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Análisis de la Célula Individual/métodos , Programas Informáticos , Aprendizaje Automático no Supervisado , Animales , Linaje de la Célula/genética , Cromatina/química , Cromatina/metabolismo , Secuencia de Consenso , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Heterogeneidad Genética , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Especificidad de Órganos , Regiones Promotoras Genéticas
19.
Spine (Phila Pa 1976) ; 47(5): E203-E213, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431832

RESUMEN

STUDY DESIGN: In vitro experimental study. OBJECTIVE: To establish an axial impact injury model of intervertebral disc (IVD) and to investigate if a single impact injury without endplate structural disruption could initiate intervertebral disc degeneration (IDD), and what is the roles of Piezo1 in this process. SUMMARY OF BACKGROUND DATA: Although IDD process has been confirmed to be associated with structural failures such as endplate fractures, whether a single impact injury of the endplates without structural disruption could initiate IDD remains controversial. Previous studies reported that Piezo1 mediated inflammation participated in the progression of IDD induced by mechanical stretch; however, the roles of Piezo1 in IVD impact injury remain unknown. METHODS: Rats spinal segments were randomly assigned into Control, Low, and High Impact groups, which were subjected to pure axial impact loading using a custom-made apparatus, and cultured for 14 days. The degenerative process was investigated by using histomorphology, real-time Polymerase Chain Reaction(PCR), western-blot, immunofluorescence, and energy metabolism of IVD cell. The effects of Piezo1 were investigated by using siRNA transfection, real-time PCR, western-blot, and immunofluorescence. RESULTS: The discs in both of the impact groups presented degenerative changes after 14 days, which showed significant up-regulation of Piezo1, NLRP3 inflammasome, the catabolic (MMP-9, MMP-13), and pro-inflammatory gene (IL-1ß) expression than that of the control group (P < 0.05), accompanied by significantly increased release of ATP, lactate, nitric oxide (NO), and glucose consumption of IVD cells at first 7 days. Silencing Piezo1 reduced the activation of NLRP3 inflammasome and IL-1ß expression in the nucleus pulposus induced by impact injury. CONCLUSION: It demonstrated that not only fracture of the endplate but also a single impact injury without structural impairment could also initiate IDD, which might be mediated by activation of Piezo1 induced inflammation and abnormal energy metabolism of IVD cells.Level of Evidence: N/A.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Traumatismos Vertebrales , Animales , Inflamación/genética , Degeneración del Disco Intervertebral/genética , Ratas
20.
JOR Spine ; 4(3): e1146, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34611583

RESUMEN

INTRODUCTION: The goal of this study is to characterize transcriptome changes and gene regulation networks in an organ culture system that mimics early post-traumatic intervertebral disc (IVD) degeneration. METHODS: To mimic a traumatic insult, bovine caudal IVDs underwent one strike loading. The control group was cultured under physiological loading. At 24 hours after one strike or physiological loading, RNA was extracted from nucleus pulposus (NP) and annulus fibrosus (AF) tissue. High throughput next generation RNA sequencing was performed to identify differentially expressed genes (DEGs) between the one strike loading group and the control group. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes analyses were performed to analyze DEGs and pathways. Protein-protein interaction (PPI) network was analyzed with cytoscape software. DEGs were verified using qRT-PCR. Degenerated human IVD tissue was collected for immunofluorescence staining to verify the expression of DEGs in human disc tissue. RESULTS: One strike loading resulted in significant gene expression changes compared with physiological loading. In total 253 DEGs were found in NP tissue and 208 DEGs in AF tissue. Many of the highly dysregulated genes have known functions in disc degeneration and extracellular matrix (ECM) homeostasis. ACTB, ACTG, PFN1, MYL12B in NP tissue and FGF1, SPP1 in AF tissue were verified by qRT-PCR and immunofluorescence imaging. The identified DEGs were involved in focal adhesion, ECM-receptor interaction, PI3K-AKT, and cytokine-cytokine receptor interaction pathways. Three clusters of PPI networks were identified. GO enrichment revealed that these DEGs were mainly involved in inflammatory response, the ECM and growth factor signaling and protein folding biological process. CONCLUSION: Our study revealed different DEGs, pathways, biological process and PPI networks involved in post-traumatic IVD degeneration. These findings will advance the understanding of the pathogenesis of IVD degeneration, and help to identify novel biomarkers for the disease diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...