Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Immune Netw ; 24(2): e18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38725671

RESUMEN

Acute necrotizing encephalopathy (ANE) is a rare but deadly complication with an unclear pathogenesis. We aimed to elucidate the immune characteristics of H1N1 influenza virus-associated ANE (IANE) and provide a potential therapeutic approach for IANE. Seven pediatric cases from a concentrated outbreak of H1N1 influenza were included in this study. The patients' CD4+ T cells from peripheral blood decreased sharply in number but highly expressed Eomesodermin (Eomes), CD69 and PD-1, companied with extremely high levels of IL-6, IL-8 in the cerebrospinal fluid and plasma. Patient 2, who showed high fever and seizures and was admitted to the hospital very early in the disease course, received intravenous tocilizumab and subsequently showed a reduction in temperature and a stable conscious state 24 h later. In conclusion, a proinflammatory cytokine storm associated with activated CD4+ T cells may cause severe brain pathology in IANE. Tocilizumab may be helpful in treating IANE.

2.
Cell Rep Med ; 5(3): 101476, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508138

RESUMEN

Endometriosis, affecting 6%-10% of women, often leads to pain and infertility and its underlying inflammatory mechanisms are poorly understood. We established endometriosis models in wild-type and IL16KO mice, revealing the driver function of IL-16 in initiating endometriosis-related inflammation. Using an in vitro system, we confirmed iron overload-induced GSDME-mediated pyroptosis as a key trigger for IL-16 activation and release. In addition, our research led to the development of Z30702029, a compound inhibiting GSDME-NTD-mediated pyroptosis, which shows promise as a therapeutic intervention for endometriosis. Importantly, our findings extend beyond endometriosis, highlighting GSDME-mediated pyroptosis as a broader pathway for IL-16 release and offering insights into potential treatments for various inflammatory conditions.


Asunto(s)
Endometriosis , Animales , Femenino , Humanos , Ratones , Endometriosis/tratamiento farmacológico , Inflamación , Interleucina-16 , Piroptosis , Linfocitos T
3.
Cell Rep ; 43(2): 113786, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363684

RESUMEN

Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Ratones , Supervivencia Celular , Hígado , Ganglios Linfáticos , Factores de Transcripción
4.
Transl Oncol ; 39: 101813, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235621

RESUMEN

PURPOSE: Platelets could promote tumor growth and metastasis. However, the role of platelets in different subtypes of non-small cell lung cancer (NSCLC) and platelet infiltration in local tumor tissue remain unclear. METHODS: Initially, platelet infiltration in lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SCC) was estimated by CD41 expression using immunohistochemistry. Subsequently, co-incubation of NSCLC cell lines and platelets was performed to compare the ability of binding platelets. Subcutaneous tumor models were established to assess the ability of platelets to promote tumor growth. Then, RNA-seq data of NSCLC was used to identify differentially expressed genes and enriched pathways. Lastly, a clinical cohort comprising of ADC and SCC patients as well as meta-analysis was analyzed to compare the difference of coagulation associated clinical parameters. RESULTS: We found high platelet infiltration in ADC, especially of advanced disease and metastases, whereas few platelets were observed in SCC. Moreover, ADC cell lines exhibited strong ability of binding platelets compared with SCC cell lines. Platelets could also promote the growth of ADC cell lines in vivo. Furthermore, coagulation cascades and fibrinogen were upregulated in ADC. And chemical inhibition of GPIIb/IIIa-fibrinogen axis reduced the binding of ADC cells and platelets. ADC patients were also in a hypercoagulable state characterized by higher d-dimer level and shorter clotting time. Finally, meta-analysis identified a higher risk of venous thromboembolism (VTE) in ADC patients and low molecular weight heparin (LMWH) treatment was effective at reducing this risk. CONCLUSIONS: This study identified the differences of platelet infiltration and coagulation between ADC and SCC patients, which may inform the development of anticoagulation therapies for NSCLC.

5.
Front Med ; 17(6): 1080-1095, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157195

RESUMEN

As of May 3, 2023, the Coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.


Asunto(s)
COVID-19 , Humanos , Interleucina-6 , Síndrome de Liberación de Citoquinas , SARS-CoV-2 , Citocinas , Biología
6.
Cell Discov ; 9(1): 82, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528081

RESUMEN

The Mulibrey (Muscle-liver-brain-eye) nanism caused by loss-of-function variants in TRIM37 gene is an autosomal recessive disorder characterized by severe growth failure and constrictive pericarditis. These patients also suffer from severe respiratory infections, co-incident with an increased mortality rate. Here, we revealed that TRIM37 variants were associated with recurrent infection. Trim37 FINmajor (a representative variant of Mulibrey nanism patients) and Trim37 knockout mice were susceptible to influenza virus infection. These mice showed defects in follicular helper T (TFH) cell development and antibody production. The effects of Trim37 on TFH cell differentiation relied on its E3 ligase activity catalyzing the K27/29-linked polyubiquitination of Bcl6 and its MATH domain-mediated interactions with Bcl6, thereby protecting Bcl6 from proteasome-mediated degradation. Collectively, these findings highlight the importance of the Trim37-Bcl6 axis in controlling the development of TFH cells and the production of high-affinity antibodies, and further unveil the immunologic mechanism underlying recurrent respiratory infection in Mulibrey nanism.

8.
Cell Mol Immunol ; 20(11): 1313-1327, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653127

RESUMEN

Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.


Asunto(s)
Asma , Interleucina-10 , Animales , Humanos , Ratones , Alérgenos , Células Dendríticas , Modelos Animales de Enfermedad , Pulmón/patología , Pyroglyphidae , Células Th2
10.
Mod Pathol ; 36(8): 100186, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37059230

RESUMEN

Population-based cervical cytology screening techniques are demanding and laborious and have relatively poor diagnostic accuracy. In this study, we present a cytologist-in-the-loop artificial intelligence (CITL-AI) system to improve the accuracy and efficiency of abnormal cervical squamous cell detection in cervical cancer screening. The artificial intelligence (AI) system was developed using 8000 digitalized whole slide images, including 5713 negative and 2287 positive cases. External validation was performed using an independent, multicenter, real-world data set of 3514 women, who were screened for cervical cancer between 2021 and 2022. Each slide was assessed using the AI system, which generated risk scores. These scores were then used to optimize the triaging of true negative cases. The remaining slides were interpreted by cytologists who had varying degrees of experience and were categorized as either junior or senior specialists. Stand-alone AI had a sensitivity of 89.4% and a specificity of 66.4%. These data points were used to establish the lowest AI-based risk score (ie, 0.35) to optimize the triage configuration. A total of 1319 slides were triaged without missing any abnormal squamous cases. This also reduced the cytology workload by 37.5%. Reader analysis found CITL-AI had superior sensitivity and specificity compared with junior cytologists (81.6% vs 53.1% and 78.9% vs 66.2%, respectively; both with P < .001). For senior cytologists, CITL-AI specificity increased slightly from 89.9% to 91.5% (P = .029); however, sensitivity did not significantly increase (P = .450). Therefore, CITL-AI could reduce cytologists' workload by more than one-third while simultaneously improving diagnostic accuracy, especially compared with less experienced cytologists. This approach could improve the accuracy and efficiency of abnormal cervical squamous cell detection in cervical cancer screening programs worldwide.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patología , Inteligencia Artificial , Frotis Vaginal/métodos , Detección Precoz del Cáncer/métodos , Células Epiteliales/patología
11.
EMBO Rep ; 24(5): e56052, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36896611

RESUMEN

Lysine lactylation (Kla) is a recently discovered histone mark derived from metabolic lactate. The NAD+ -dependent deacetylase SIRT3, which can also catalyze removal of the lactyl moiety from lysine, is expressed at low levels in hepatocellular carcinoma (HCC) and has been suggested to be an HCC tumor suppressor. Here we report that SIRT3 can delactylate non-histone proteins and suppress HCC development. Using SILAC-based quantitative proteomics, we identify cyclin E2 (CCNE2) as one of the lactylated substrates of SIRT3 in HCC cells. Furthermore, our crystallographic study elucidates the mechanism of CCNE2 K348la delactylation by SIRT3. Our results further suggest that lactylated CCNE2 promotes HCC cell growth, while SIRT3 activation by Honokiol induces HCC cell apoptosis and prevents HCC outgrowth in vivo by regulating Kla levels of CCNE2. Together, our results establish a physiological function of SIRT3 as a delactylase that is important for suppressing HCC, and our structural data could be useful for the future design of activators.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuina 3 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Lisina , Proliferación Celular , Ciclinas/genética
12.
J Hematol Oncol ; 16(1): 30, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973755

RESUMEN

BACKGROUND: Cancer cachexia is a deadly wasting syndrome that accompanies various diseases (including ~ 50% of cancers). Clinical studies have established that cachexia is not a nutritional deficiency and is linked to expression of certain proteins (e.g., interleukin-6 and C-reactive protein), but much remains unknown about this often fatal syndrome. METHODS: First, cachexia was created in experimental mouse models of lung cancer. Samples of human lung cancer were used to identify the association between the serum lipocalin 2 (LCN2) level and cachexia progression. Then, mouse models with LCN2 blockade or LCN2 overexpression were used to ascertain the role of LCN2 upon ferroptosis and cachexia. Furthermore, antibody depletion of tissue-infiltrating neutrophils (TI-Neu), as well as myeloid-specific-knockout of Lcn2, were undertaken to reveal if LCN2 secreted by TI-Neu caused cachexia. Finally, chemical inhibition of ferroptosis was conducted to illustrate the effect of ferroptosis upon tissue wasting. RESULTS: Protein expression of LCN2 was higher in the wasting adipose tissue and muscle tissues of experimental mouse models of lung cancer cachexia. Moreover, evaluation of lung cancer patients revealed an association between the serum LCN2 level and cachexia progression. Inhibition of LCN2 expression reduced cachexia symptoms significantly and inhibited tissue wasting in vivo. Strikingly, we discovered a significant increase in the number of TI-Neu in wasting tissues, and that these innate immune cells secreted high levels of LCN2. Antibody depletion of TI-Neu, as well as myeloid-specific-knockout of Lcn2, prevented ferroptosis and tissue wasting in experimental models of lung cancer cachexia. Chemical inhibition of ferroptosis alleviated tissue wasting significantly and also prolonged the survival of cachectic mice. CONCLUSIONS: Our study provides new insights into how LCN2-induced ferroptosis functionally impacts tissue wasting. We identified LCN2 as a potential target in the treatment of cancer cachexia.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Humanos , Ratones , Animales , Caquexia/etiología , Caquexia/metabolismo , Caquexia/prevención & control , Lipocalina 2 , Neutrófilos/metabolismo , Neoplasias Pulmonares/complicaciones , Músculos/metabolismo
13.
Cancer Sci ; 114(6): 2386-2399, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919759

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, whose initiation and development are driven by alterations in driver genes. In this study, we identified four driver genes (TP53, PTEN, CTNNB1, and KRAS) that show a high frequency of somatic mutations or copy number variations (CNVs) in patients with HCC. Four different spontaneous HCC mouse models were constructed to screen for changes in various kinase signaling pathways. The sgTrp53 + sgPten tumor upregulated mTOR and noncanonical nuclear factor-κB signaling, which was shown to be strongly inhibited by rapamycin (an mTOR inhibitor) in vitro and in vivo. The JAK-signal transducer and activator of transcription (STAT) signaling was activated in Ctnnb1mut + sgPten tumor, the proliferation of which was strongly inhibited by napabucasin (a STAT3 inhibitor). Additionally, mTOR, cytoskeleton, and AMPK signaling were upregulated while rapamycin and ezrin inhibitors exerted potent antiproliferative effects in sgPten + KrasG12D tumor. We found that JAK-STAT, MAPK, and cytoskeleton signaling were activated in sgTrp53 + KrasG12D tumor and the combination of sorafenib and napabucasin led to the complete inhibition of tumor growth in vivo. In patients with HCC who had the same molecular classification as our mouse models, the downstream signaling pathway landscapes associated with genomic alterations were identical. Our research provides novel targeted therapeutic options for the clinical treatment of HCC, based on the presence of specific genetic alterations within the tumor.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Variaciones en el Número de Copia de ADN/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Línea Celular Tumoral
14.
Nat Immunol ; 24(5): 802-813, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959292

RESUMEN

The highly variable response rates to immunotherapies underscore our limited knowledge about how tumors can manipulate immune cells. Here the membrane topology of natural killer (NK) cells from patients with liver cancer showed that intratumoral NK cells have fewer membrane protrusions compared with liver NK cells outside tumors and with peripheral NK cells. Dysregulation of these protrusions prevented intratumoral NK cells from recognizing tumor cells, from forming lytic immunological synapses and from killing tumor cells. The membranes of intratumoral NK cells have altered sphingomyelin (SM) content and dysregulated serine metabolism in tumors contributed to the decrease in SM levels of intratumoral NK cells. Inhibition of SM biosynthesis in peripheral NK cells phenocopied the disrupted membrane topology and cytotoxicity of the intratumoral NK cells. Targeting sphingomyelinase confers powerful antitumor efficacy, both as a monotherapy and as a combination therapy with checkpoint blockade.


Asunto(s)
Células Asesinas Naturales , Neoplasias Hepáticas , Humanos , Sinapsis Inmunológicas , Citotoxicidad Inmunológica
15.
Am J Reprod Immunol ; 89(3): e13676, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621850

RESUMEN

PROBLEM: Impairment of PBX1 expression in decidual natural killer (dNK) cells is associated with the pathogenesis of unexplained recurrent spontaneous abortion, which results in fetal growth restriction (FGR) by affecting the secretion of downstream growth factors. However, whether other mechanisms limit embryo growth in decidua containing PBX1-deficient natural killer (NK) cells is unknown. METHOD OF STUDY: Pbx1f/f ; Ncr1Cre mice were employed to explore the underlying mechanisms by which PBX1- NK cells affect embryonic development. To simulate the clinical testing of pregnant women, Doppler ultrasound imaging was used to detect embryo implantation and development. Differentially expressed genes (DEGs) in PBX1- NK cells that may affect normal pregnancy were screened using RNA-sequencing and real-time PCR. Immune cell changes caused by DEGs were detected by flow cytometry. Finally, the mechanism of FGR was explored by injecting the protein LCN2, corresponding to the selected DEG, into mice. RESULTS: We verified the embryonic dysplasia in pregnant Pbx1f/f ; Ncr1Cre mice by Doppler ultrasound imaging and found that LCN2 was upregulated in dNK cells. We also observed higher infiltration of neutrophils and macrophages in the decidua of Pbx1f/f ; Ncr1Cre mice. Finally, we found an increase in the number and activation of neutrophils at the maternal-fetal interface after injecting LCN2 into pregnant mice and observed that these mice showed signs of FGR. CONCLUSION: Excessive LCN2 secreted by PBX1- dNK cells at the maternal-fetal interface recruit neutrophils and causes an inflammatory response, which is related to FGR.


Asunto(s)
Aborto Habitual , Receptor 1 Gatillante de la Citotoxidad Natural , Embarazo , Humanos , Femenino , Animales , Ratones , Lipocalina 2/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Células Asesinas Naturales , Inflamación/genética , Inflamación/metabolismo , Decidua , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo
16.
Hepatology ; 77(3): 965-981, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938354

RESUMEN

BACKGROUND AND AIMS: Chronic HBV infection is the leading cause of HCC and a serious health problem in China, East Asia, and North African countries. Effective treatment of HBV-related HCC is currently unavailable. This study evaluated the therapeutic potential of T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade in HBV-related HCC. APPROACH AND RESULTS: A mouse model of spontaneous HBV-related HCC was generated by replacing wild-type hepatocytes with HBsAg + hepatocytes (namely HBs-HepR mice). The tumors in HBs-HepR mice were inflammation-associated HCC, similar to HBV-related HCC in patients, which was distinguished from other HCC mouse models, such as diethylnitrosamine-induced HCC, TGF-ß-activated kinase 1 knockout-induced HCC, HCC in a stelic animal model, or NASH-induced HCC. HCC in HBs-HepR mice was characterized by an increased number of CD8 + T cells, whereas the production of IL-2, TNF-α, and interferon-gamma (IFN-γ) by intrahepatic CD8 + T cells was decreased. Increased expression of TIGIT on CD8 + T cells was responsible for functional exhaustion. The therapeutic effect of TIGIT blockade was investigated at the early and middle stages of HCC progression in HBs-HepR mice. TIGIT blockade reinvigorated intrahepatic CD8 + T cells with increased TNF-α and IFN-γ production and an increased number of CD8 + T cells in tumors, thereby slowing the development of HCC in HBs-HepR mice. Blocking PD-L1 did not show direct therapeutic effects or synergize with TIGIT blockade. CONCLUSIONS: Blockade of TIGIT alone enhanced the antitumor activity of CD8 + T cells during the progression of HBV-related HCC in a spontaneous HCC mouse model.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Linfocitos T CD8-positivos , Virus de la Hepatitis B , Neoplasias Hepáticas/patología , Receptor de Muerte Celular Programada 1 , Receptores de Antígenos de Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunoglobulinas/inmunología
17.
Immunology ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36562137

RESUMEN

Natural killer (NK) cells are known for their potent ability to kill stressed cells, whereas host cells infected with intra-cellular bacteria may also be benefit from the selective killing function of NK cells and survive. The mechanism of how NK cells protect host cells infected with intra-cellular bacteria is still unclear. Here, we discovered that decidual NK (dNK) cells cannot only eliminate intra-cellular bacteria which infected trophoblasts, but can also synthesize more lipids and transport lipids to trophoblasts to avoid their apoptosis. Mechanically, NK cells synthesize more lipids accompanied by increasing expression of apolipoprotein APOD. Lipids in NK cells can be delivered to trophoblast cells through APOD, maintaining adequate lipid droplet content and lipid metabolism homeostasis in trophoblasts. Blocking the APOD receptor LRP1 abolished lipid transport from NK cells to trophoblasts, and the reduction of lipid droplets caused by bacterial infection in trophoblast cells could not be restored, culminating in cell apoptosis. Our study provides new evidence for the immune surveillance and protective effect of NK cells on embryos during early pregnancy.

19.
Front Immunol ; 13: 1040256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389751

RESUMEN

More than 85% of colorectal cancer (CRC) patients, who are with microsatellite stability (MSS), are resistant to immune checkpoint blockade (ICB) treatment. To overcome this resistance, combination therapy with chemotherapy is the most common choice. However, many CRC patients do not benefit more from combination therapy than chemotherapy alone. We hypothesize that severe immunosuppression, caused by chemotherapy administered at the maximum tolerated dose, antagonizes the ICB treatment. In this study, we found that low-dose oxaliplatin (OX), an immunogenic cell death (ICD)-induced drug, increased the antitumor response of TIGIT blockade against CT26 tumor, which is regarded as a MSS tumor. Combined treatment with OX and TIGIT blockade fostered CD8+ T-cell infiltration into tumors and delayed tumor progression. Importantly, only low-dose immunogenic chemotherapeutics successfully sensitized CT26 tumors to TIGIT blockade. In contrast, full-dose OX induces severe immunosuppression and impaired the efficacy of combination therapy. Further, we also found that lack of synergy between nonimmunogenic chemotherapeutics and TIGIT blockade. Consequently, this study suggests that the strategies of combination treatment of chemotherapy and ICB should be re-evaluated. The chemotherapeutics should be chosen for the potential to ICD and the dosage and regimen should be also optimized.


Asunto(s)
Neoplasias del Colon , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Repeticiones de Microsatélite , Receptores Inmunológicos
20.
Front Immunol ; 13: 993246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203595

RESUMEN

It was extensively recognized that central tolerance to HBV exists in HBs-transgenic (Tg) mice, however, the immune response to HBV vaccine may be inspired in adult HBs-Tg mice after boosting with potent adjuvants, leaving a mystery to explore its immune tolerance. Here, WT-HBs-Tg parabiotic mice model was generated by conjoining WT (donor) and HBs-Tg (host) mouse via parabiotic surgery, in order to see how immunocompetent WT mice naturally respond to HBV, and how tolerant HBs-Tg mice influence the anti-HBV immunity from WT mice. It was found that WT CD8+ T cells markedly accumulated into the liver of HBs-Tg parabionts, and importantly, almost all HBsAg-specific CD8+ T cells derived from WT but not HBs-Tg mice, making a clear separation of a normal immune response from WT donor and a tolerant response by recipient host. Further, in the absence of host but not donor spleen, HBsAg-specific CD8+ T cells disappeared, indicating that host spleen was the indispensable site for donor HBsAg-specific CD8+ T cell priming though its mechanisms need further study. We found that donor CD4+ T helper cells were necessary for donor HBsAg-specific CD8+ T cell response by CD4-deficiency in WT or in HBs-Tg mice, indicating that an immune response was elicited between CD4+ T helper cells and CD8+ cytotoxic T cells of donor in the host but not donor spleen. It was noted that compared to donor CD4+ T cells, host CD4+ T cells were characterized with more tolerant features by harboring more CD25+Foxp3+ Tregs with higher expression of PD-1 and TIGIT in the spleen of HBs-Tg parabionts, which exhibited suppressive function on CD8+ T cells directly. Moreover, the Th1/Treg ratio was enhanced after parabiosis, suggesting that donor T helper cells may overcome the negative regulation of host Tregs in host spleen. In conclusion, both incompetent anti-HBV CD8+ T cells and insufficient help from CD4+ T cells are the major mechanisms underlying immune tolerance in HBs-Tg mice which helps explain HBV persistence.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Vacunas , Animales , Linfocitos T CD8-positivos , Factores de Transcripción Forkhead , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parabiosis , Receptor de Muerte Celular Programada 1 , Receptores Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA