Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 176: 344-355, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244662

RESUMEN

Nowadays, effective immunotherapy against triple-negative breast cancer (TNBC) remains challenging due to the immunosuppressive tumor microenvironment. Immune checkpoint inhibitor is mostly employed to restore the activity of tumor-specific immune cells, which however brings little therapeutic outcome owing to the limited number of tumor-infiltrating CD8+ T cells and the inefficient delivery of immune drugs to the tumor tissue. Aiming to solve these problems, we herein constructed a tailor-made dissolving microneedle co-encapsulating the TLR7/8 agonist R848 and the immune checkpoint inhibitor aPD-1, termed αNP-RNP@DMN, and fabricated it as a transdermal drug delivery system. This well-designed microneedle patch, endowed with efficient tumor drug delivery ability, was able to mature tumor-infiltrating dendritic cells (TIDCs) and further promote the infiltration of CD8+ T cells into the tumor tissue with the aid of R848. Moreover, the introduction of aPD-1 blocked the programmed cell death protein 1/programmed cell death ligand 1(PD-1/PD-L1) immune checkpoints, synergistically reversing the immunosuppressive microenvironment of TNBC. In vivo therapeutic results demonstrated that αNP-RNP@DMN not only significantly prolonged the survival time of 4T1 tumor-bearing mice, but also inhibited tumor recurrence and lung metastasis after surgery, implying the great potential of this effective drug delivery system for enhanced immunotherapy of superficial tumors. STATEMENT OF SIGNIFICANCE: The limited number of tumor-infiltrating CD8+ T cells and the inefficient delivery of immune drugs to the tumor tissue hinder the effective immunotherapy of triple-negative breast cancer (TNBC). Herein, a dissolving microneedle co-encapsulating TLR7/8 agonist R848 and immune checkpoint inhibitor aPD-1 was developed and fabricated as a transdermal drug delivery system. This tailor-made microneedle patch not only promoted drug accumulation in tumor sites in a safe and painless manner, but also lifted the immune-suppressive state of tumor-infiltrating dendritic cells (TIDCs). The activated TIDCs further enhanced T-cell infiltration into the tumor tissue, thus successfully boosting the therapeutic efficacy of aPD-1. This study demonstrated that this well-designed microneedle patch could be served as an effective drug delivery system for enhanced immunotherapy of TNBC.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor Toll-Like 7 , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inmunoterapia/métodos , Microambiente Tumoral
2.
Small ; 19(37): e2301420, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37154213

RESUMEN

The current immunotherapy strategies for triple negative breast cancer (TNBC) are greatly limited due to the immunosuppressive tumor microenvironment (TME). Immunization with cancer vaccines composed of tumor cell lysates (TCL) can induce an effective antitumor immune response. However, this approach also has the disadvantages of inefficient antigen delivery to the tumor tissues and the limited immune response elicited by single-antigen vaccines. To overcome these limitations, a pH-sensitive nanocalcium carbonate (CaCO3 ) carrier loaded with TCL and immune adjuvant CpG (CpG oligodeoxynucleotide 1826) is herein constructed for TNBC immunotherapy. This tailor-made nanovaccine, termed CaCO3 @TCL/CpG, not only neutralizes the acidic TME through the consumption of lactate by CaCO3 , which increases the proportion of the M1/M2 macrophages and promotes infiltration of effector immune cells but also activates the dendritic cells in the tumor tissues and recruits cytotoxic T cells to further kill the tumor cells. In vivo fluorescence imaging study shows that the pegylated nanovaccine could stay longer in the blood circulation and extravasate preferentially into tumor site. Besides, the nanovaccine exhibits high cytotoxicity in 4T1 cells and significantly inhibits tumor growth of tumor-bearing mice. Overall, this pH-sensitive nanovaccine is a promising nanoplatform for enhanced immunotherapy of TNBC.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Inmunoterapia/métodos , Adyuvantes Inmunológicos , Linfocitos T Citotóxicos , Concentración de Iones de Hidrógeno , Microambiente Tumoral
3.
J Mater Chem B ; 7(40): 6139-6147, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31553351

RESUMEN

Glioma, the most severe primary brain malignancy, has very low survival rates and a high level of recurrence. Nowadays, conventional treatments for these patients are suffering a similar plight owing to the distinctive features of the malignant gliomas, for example chemotherapy is limited by the blood-brain barrier while surgery and radiation therapy are affected by the unclear boundaries of tumor from normal tissue. In the present study, a novel superparamagnetic iron oxide (SPIO) nanoprobe for enhanced T2-weighted magnetic resonance imaging (MRI) was developed. A frequently used MRI probe, SPIO nanoparticles, was coated with a silica outer layer and for the first time was covalently modified with interleukin-6 receptor targeting peptides (I6P7) to promote transportation through the blood-brain barrier and recognition of low-grade gliomas. The efficiency of transcytosis across the blood-brain barrier was examined in vitro using a transwell invasion model and in vivo in nude mice with orthotopic low-grade gliomas. The targeting nanoprobe showed significant MRI enhancement and has potential for use in the diagnosis of low-grade gliomas.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Compuestos Férricos/química , Glioma/diagnóstico , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Fragmentos de Péptidos/química , Receptores de Interleucina-6/química , Animales , Apoptosis , Barrera Hematoencefálica , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Femenino , Glioma/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...