Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Alzheimers Res Ther ; 16(1): 22, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281031

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS: Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS: We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aß clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS: This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Animales , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Macaca mulatta/metabolismo , Disfunción Cognitiva/patología , Hipocampo/patología , Péptidos beta-Amiloides/metabolismo
2.
Biomed Pharmacother ; 168: 115842, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925936

RESUMEN

As a subclass of ionotropic glutamate receptors (iGluRs), α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have been implicated in various neurological disorders and neurodegenerative diseases. To further our understanding of AMPA receptor-related disorders in the central nervous system (CNS), it is important to be able to image and quantify AMPA receptors in vivo. In this study, we identified a novel F-containing AMPA positive allosteric modulator (PAM) 6 as a potential lead compound. Molecular docking studies and CNS PET multi-parameter optimization (MPO) analysis were used to predict the absorption, distribution, metabolism, and excretion (ADME) characteristics of 6 as a PET probe. The resulting PET probe, [18F]6 (codename [18F]AMPA-2109), was successfully radiolabeled and demonstrated excellent blood-brain barrier (BBB) permeability and high brain uptake in rodents and non-human primates. However, [18F]6 did not show substantial specific binding in the rodent or non-human primate brain. Further medicinal chemistry efforts are necessary to improve specific binding, and our work may serve as a starting point for the design of novel 18F-labeled AMPA receptor-targeted PET radioligands aimed for clinical translation.


Asunto(s)
Receptores AMPA , Tiadiazinas , Animales , Receptores AMPA/metabolismo , Tiadiazinas/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Simulación del Acoplamiento Molecular , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Roedores/metabolismo
3.
Signal Transduct Target Ther ; 8(1): 358, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735155

RESUMEN

Tauopathy, characterized by the hyperphosphorylation and accumulation of the microtubule-associated protein tau, and the accumulation of Aß oligomers, constitute the major pathological hallmarks of Alzheimer's disease. However, the relationship and causal roles of these two pathological changes in neurodegeneration remain to be defined, even though they occur together or independently in several neurodegenerative diseases associated with cognitive and movement impairment. While it is widely accepted that Aß accumulation leads to tauopathy in the late stages of the disease, it is still unknown whether tauopathy influences the formation of toxic Aß oligomers. To address this, we generated transgenic cynomolgus monkey models expressing Tau (P301L) through lentiviral infection of monkey embryos. These monkeys developed age-dependent neurodegeneration and motor dysfunction. Additionally, we performed a stereotaxic injection of adult monkey and mouse brains to express Tau (P301L) via AAV9 infection. Importantly, we found that tauopathy resulting from embryonic transgenic Tau expression or stereotaxic brain injection of AAV-Tau selectively promoted the generation of Aß oligomers in the monkey spinal cord. These Aß oligomers were recognized by several antibodies to Aß1-42 and contributed to neurodegeneration. However, the generation of Aß oligomers was not observed in other brain regions of Tau transgenic monkeys or in the brains of mice injected with AAV9-Tau (P301L), suggesting that the generation of Aß oligomers is species- and brain region-dependent. Our findings demonstrate for the first time that tauopathy can trigger Aß pathology in the primate spinal cord and provide new insight into the pathogenesis and treatment of tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Macaca fascicularis , Tauopatías/genética , Péptidos beta-Amiloides/genética , Enfermedad de Alzheimer/genética , Médula Espinal
4.
J Transl Med ; 21(1): 381, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308973

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is a severe complication of diabetes. Currently, no effective measures are available to reduce the risk of DKD progression. This study aimed to establish a weighted risk model to determine DKD progression and provide effective treatment strategies. METHODS: This was a hospital-based, cross-sectional study. A total of 1104 patients with DKD were included in this study. The random forest method was used to develop weighted risk models to assess DKD progression. Receiver operating characteristic curves were used to validate the models and calculate the optimal cutoff values for important risk factors. RESULTS: We developed potent weighted risk models to evaluate DKD progression. The top six risk factors for DKD progression to chronic kidney disease were hemoglobin, hemoglobin A1c (HbA1c), serum uric acid (SUA), plasma fibrinogen, serum albumin, and neutrophil percentage. The top six risk factors for determining DKD progression to dialysis were hemoglobin, HbA1c, neutrophil percentage, serum albumin, duration of diabetes, and plasma fibrinogen level. Furthermore, the optimal cutoff values of hemoglobin and HbA1c for determining DKD progression were 112 g/L and 7.2%, respectively. CONCLUSION: We developed potent weighted risk models for DKD progression that can be employed to formulate precise therapeutic strategies. Monitoring and controlling combined risk factors and prioritizing interventions for key risk factors may help reduce the risk of DKD progression.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Hemoglobina Glucada , Estudios Transversales , Ácido Úrico , Fibrinógeno
5.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37111280

RESUMEN

The COVID-19 pandemic has posed a significant challenge to global public health. In response, the search for specific antiviral drugs that can effectively treat the disease caused by the SARS-CoV-2 virus has become a priority. While significant progress has been made in this regard, much work remains to address this ongoing crisis effectively. Favipiravir is an antiviral drug initially developed for the treatment of influenza and has received approval for emergency use for COVID-19 in many countries. A better understanding of the biodistribution and pharmacokinetics of Favipiravir in vivo would facilitate the development and translation of clinical antiviral drugs for COVID-19. Herein, we report the evaluation of [18F]Favipiravir in naive mice, transgenic mice models of Alzheimer's disease, and nonhuman primates (NHP) with positron emission tomography (PET). The [18F]Favipiravir was obtained in an overall decay-corrected radiochemical yield of 29% with a molar activity of 25 GBq/µmol at the end of synthesis (EOS). PET imaging in naive mice, transgenic mice models of Alzheimer's disease, and nonhuman primates revealed a low initial brain uptake, followed by a slow washout of [18F]Favipiravir in vivo. The [18F]Favipiravir was eliminated by a combination of hepatobiliary and urinary excretion. The low brain uptake was probably attributed to the low lipophilicity and low passive permeability of the drug. We hope this proof-of-concept study will provide a unique feature to study antiviral drugs using their corresponding isotopologues by PET.

6.
Pharmacol Res ; 189: 106681, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746361

RESUMEN

OBJECTIVES: Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS: Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS: [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION: Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Humanos , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Cinética , Tomografía de Emisión de Positrones/métodos , Primates/metabolismo , Radiofármacos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
7.
ACS Chem Neurosci ; 13(23): 3464-3476, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36441909

RESUMEN

The P2X7 receptor (P2X7R) is a key neuroinflammation target in a variety of neurodegenerative diseases. Improved radiosynthesis was developed according to the previously reported P2X7R antagonist GSK1482160. Biodistribution, radiometabolite, and dynamic positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MRI) of the lipopolysaccharide (LPS) rat model and the transgenic mouse model of Alzheimer's disease (AD) revealed a stable, low uptake of [18F]4A in the brain of healthy rats but a higher standardized uptake value ratio (SUVR) in LPS-treated rats (1.316 ± 0.062, n = 3) than in sham (1.093 ± 0.029, n = 3). There were higher area under curves (AUCs) in the neocortex (25.12 ± 1.11 vs 18.94 ± 1.47), hippocampus (22.50 ± 3.41 vs 15.90 ± 1.59), and basal ganglia (22.26 ± 0.81 vs 15.32 ± 1.76) of AD mice (n = 3) than the controls (n = 3) (p < 0.05). Furthermore, 50 min dynamic PET in healthy nonhuman primates (NHPs) indicated [18F]4A could penetrate the blood-brain barrier (BBB). In conclusion, [18F]4A from this study is a potent P2X7R PET tracer that warrants further neuroinflammation quantification in human studies.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores Purinérgicos P2X7 , Animales , Ratones , Ratas , Distribución Tisular
8.
Sci Transl Med ; 14(665): eadc9967, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36197966

RESUMEN

Alterations in brain cholesterol homeostasis have been broadly implicated in neurological disorders. Notwithstanding the complexity by which cholesterol biology is governed in the mammalian brain, excess neuronal cholesterol is primarily eliminated by metabolic clearance via cytochrome P450 46A1 (CYP46A1). No methods are currently available for visualizing cholesterol metabolism in the living human brain; therefore, a noninvasive technology that quantitatively measures the extent of brain cholesterol metabolism via CYP46A1 could broadly affect disease diagnosis and treatment options using targeted therapies. Here, we describe the development and testing of a CYP46A1-targeted positron emission tomography (PET) tracer, 18F-CHL-2205 (18F-Cholestify). Our data show that PET imaging readouts correlate with CYP46A1 protein expression and with the extent to which cholesterol is metabolized in the brain, as assessed by cross-species postmortem analyses of specimens from rodents, nonhuman primates, and humans. Proof of concept of in vivo efficacy is provided in the well-established 3xTg-AD murine model of Alzheimer's disease (AD), where we show that the probe is sensitive to differences in brain cholesterol metabolism between 3xTg-AD mice and control animals. Furthermore, our clinical observations point toward a considerably higher baseline brain cholesterol clearance via CYP46A1 in women, as compared to age-matched men. These findings illustrate the vast potential of assessing brain cholesterol metabolism using PET and establish PET as a sensitive tool for noninvasive assessment of brain cholesterol homeostasis in the clinic.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Femenino , Homeostasis , Humanos , Masculino , Mamíferos/metabolismo , Ratones
9.
Front Bioeng Biotechnol ; 10: 983488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147528

RESUMEN

Our previous work showed that [18F]P10A-1910 was a potential radioligand for use in imaging phosphodiesterase 10A (PDE10A). Specifically, it had high brain penetration and specific binding that was demonstrated in both rodents and non-human primates. Here, we present the first automatic cGMP-level production of [18F]P10A-1910 and translational PET/MRI study in living human brains. Successful one-step radiolabeling of [18F]P10A-1910 on a GE TRACERlab FX2N synthesis module was realized via two different methods. First, formulated [18F]P10A-1910 was derived from heating spirocyclic iodonium ylide in a tetra-n-butyl ammonium methanesulfonate solution. At the end of synthesis, it was obtained in non-decay corrected radiochemical yields (n.d.c. RCYs) of 12.4 ± 1.3%, with molar activities (MAs) of 90.3 ± 12.6 µmol (n = 7) (Method I). The boronic pinacol ester combined with copper and oxygen also delivered the radioligand with 16.8 ± 1.0% n. d.c. RCYs and 77.3 ± 20.7 GBq/µmol (n = 7) MAs after formulation (Method II). The radiochemical purity, radionuclidic purity, solvent residue, sterility, endotoxin content and other parameters were all validated for human use. Consistent with the distribution of PDE10A in the brain, escalating uptake of [18F]P10A-1910 was observed in the order of cerebellum (reference region), substantial nigra, caudate and putamen. The non-displaceable binding potential (BP ND) was estimated by simplified reference-tissue model (SRTM); linear regressions demonstrated that BP ND was well correlated with the most widely used semiquantitative parameter SUV. The strongest correlation was observed with SUV(50-60 min) (R 2 = 0.966, p < 0.01). Collectively, these results indicated that a static scan protocol could be easily performed for PET imaging of PDE10A. Most importantly, that [18F]P10A-1910 is a promising radioligand to clinically quantify PDE10A.

10.
Acta Pharm Sin B ; 12(4): 1963-1975, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847497

RESUMEN

As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia-of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (P app > 10 × 10-6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose-response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.

11.
Front Neurosci ; 16: 806876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495051

RESUMEN

Autism spectrum disorder (ASD) is a basket term for neurodevelopmental disorders characterized by marked impairments in social interactions, repetitive and stereotypical behaviors, and restricted interests and activities. Subtypes include (A) disorders with known genetic abnormalities including fragile X syndrome, Rett syndrome, and tuberous sclerosis and (B) idiopathic ASD, conditions with unknown etiologies. Positron emission tomography (PET) is a molecular imaging technology that can be utilized in vivo for dynamic and quantitative research, and is a valuable tool for exploring pathophysiological mechanisms, evaluating therapeutic efficacy, and accelerating drug development in ASD. Recently, several imaging studies on ASD have been published and physiological changes during ASD progression was disclosed by PET. This paper reviews the specific radioligands for PET imaging of critical biomarkers in ASD, and summarizes and discusses the similar and different discoveries in outcomes of previous studies. It is of great importance to identify general physiological changes in cerebral glucose metabolism, cerebral blood flow perfusion, abnormalities in neurotransmitter systems, and inflammation in the central nervous system in ASD, which may provide excellent points for further ASD research.

12.
Funct Integr Genomics ; 22(4): 525-535, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35394266

RESUMEN

This study aimed to assess the association between PAM single-nucleotide polymorphisms (SNPs) and T2DM risk in the Chinese population. We performed the genotype of PAM SNPs using Agena MassARRAY in 1002 subjects. The effect of PAM polymorphisms on T2DM occurrence was evaluated by logistic regression analysis. False-positive report probability (FPRP) was utilized to assess the noteworthiness of the significant results. This study showed that PAM rs406761, rs17154889, and rs6889592 were related to an increased risk of T2DM. The similar results were also in subjects with ≤ 60 years. Rs2431320 and rs406761 were related to an increased risk of T2DM in males, and rs6889592 was only found to be associated with T2DM risk in females. Rs2431320 and rs406761 increased T2DM risk in people with BMI > 24, and rs6889592 and rs26431 significantly correlated with T2DM risk in people with BMI ≤ 24. By comparing patients with no retinopathy with controls, the correlation between PAM rs406761 and rs17154889 and T2DM risk was observed. The significant association between T2DM risk and PAM SNPs was remarkable by FPRP values. PAM SNPs were correlated with T2DM risk in the Chinese population, illustrating the importance of PAM SNPs in the pathogenesis of T2DM.


Asunto(s)
Amidina-Liasas , Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Oxigenasas de Función Mixta , Amidina-Liasas/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Genotipo , Humanos , Masculino , Oxigenasas de Función Mixta/genética , Polimorfismo de Nucleótido Simple
13.
J Med Chem ; 64(19): 14283-14298, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34569803

RESUMEN

Monoacylglycerol lipase (MAGL) is a 33 kDa serine protease primarily responsible for hydrolyzing 2-arachidonoylglycerol into the proinflammatory eicosanoid precursor arachidonic acid in the central nervous system. Inhibition of MAGL constitutes an attractive therapeutic concept for treating psychiatric disorders and neurodegenerative diseases. Herein, we present the design and synthesis of multiple reversible MAGL inhibitor candidates based on a piperazinyl azetidine scaffold. Compounds 10 and 15 were identified as the best-performing reversible MAGL inhibitors by pharmacological evaluations, thus channeling their radiolabeling with fluorine-18 in high radiochemical yields and favorable molar activity. Furthermore, evaluation of [18F]10 and [18F]15 ([18F]MAGL-2102) by autoradiography and positron emission tomography (PET) imaging in rodents and nonhuman primates demonstrated favorable brain uptakes, heterogeneous radioactivity distribution, good specific binding, and adequate brain kinetics, and [18F]15 demonstrated a better performance. In conclusion, [18F]15 was found to be a suitable PET radioligand for the visualization of MAGL, harboring potential for the successful translation into humans.


Asunto(s)
Azetidinas/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Tomografía de Emisión de Positrones , Radiofármacos/farmacología , Animales , Azetidinas/síntesis química , Azetidinas/química , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Haplorrinos , Ligandos , Modelos Moleculares , Estructura Molecular , Monoacilglicerol Lipasas/metabolismo , Radiofármacos/síntesis química , Radiofármacos/química , Ratas , Relación Estructura-Actividad
14.
Diabetol Metab Syndr ; 13(1): 92, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465375

RESUMEN

BACKGROUND: Diabetic foot ulcer (DFU) is a serious chronic complication of diabetes. This study aimed to establish weighted risk models for determining DFU occurrence and severity in diabetic patients. METHODS: This was a multi-center hospital-based cross-sectional study. A total of 1488 diabetic patients with or without an ulcer from three tertiary hospitals were included in the study. Random forest method was used to develop weighted risk models for assessing DFU risk and severity. Receiver operating characteristic curves were used to validate the models and calculate the optimal cut-off values of the important risk factors. RESULTS: We developed potent weighted risk models for evaluating DFU occurrence and severity. The top eight important risk factors for DFU onset were plasma fibrinogen, neutrophil percentage and hemoglobin levels in whole blood, stroke, estimated glomerular filtration rate, age, duration of diabetes, and serum albumin levels. The top 10 important risk factors for DFU severity were serum albumin, neutrophil percentage and hemoglobin levels in whole blood, plasma fibrinogen, hemoglobin A1c, estimated glomerular filtration rate, hypertension, serum uric acid, diabetic retinopathy, and sex. Furthermore, the area under curve values in the models using plasma fibrinogen as a single risk factor for determining DFU risk and severity were 0.86 (sensitivity 0.74, specificity 0.87) and 0.73 (sensitivity 0.76, specificity 0.58), respectively. The optimal cut-off values of plasma fibrinogen for determining DFU risk and severity were 3.88 g/L and 4.74 g/L, respectively. CONCLUSIONS: We have established potent weighted risk models for DFU onset and severity, based on which precise prevention strategies can be formulated. Modification of important risk factors may help reduce the incidence and progression of DFUs in diabetic patients.

15.
Entropy (Basel) ; 22(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33285846

RESUMEN

Scientific experimental racks are an indispensable supporter in space stations for experiments with regard to meeting different temperature and humidity requirements. The diversity of experiments brings enormous challenges to the thermal control system of racks. This paper presents an indirect coupling thermal control single-phase fluid loop system for scientific experimental racks, along with fuzzy incremental control strategies. A dynamic model of the thermal control system is built, and three control strategies for it, with different inputs and outputs, are simulated. A comparison of the calculated results showed that pump speed and outlet temperature of the cold plate branch are, respectively, the best choice for the control variable and controlled variable in the controller. It showed that an indirect coupling thermal control fluid loop system with a fuzzy incremental controller is feasible for the thermal control of scientific experimental racks in space stations.

16.
Acta Diabetol ; 57(6): 705-713, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32008161

RESUMEN

AIMS: Type 2 diabetes mellitus (T2DM) is now very prevalent in China. Due to the lower rate of controlled diabetes in China compared to that in developed countries, there is a higher incidence of serious cardiovascular complications, especially acute coronary syndrome (ACS). The aim of this study was to establish a potent risk predictive model in the economically disadvantaged northwest region of China, which could predict the probability of new-onset ACS in patients with T2DM. METHODS: Of 456 patients with T2DM admitted to the First Affiliated Hospital of Xi'an Jiaotong University from January 2018 to January 2019 and included in this study, 270 had no ACS, while 186 had newly diagnosed ACS. Overall, 32 demographic characteristics and serum biomarkers of the study patients were analysed. The least absolute shrinkage and selection operator regression was used to select variables, while the multivariate logistic regression was used to establish the predictive model that was presented using a nomogram. The area under the receiver operating characteristics curve (AUC) was used to evaluate the discriminatory capacity of the model. A calibration plot and Hosmer-Lemeshow test were used for the calibration of the predictive model, while the decision curve analysis (DCA) was used to evaluate its clinical validity. RESULTS: After random sampling, 319 and 137 T2DM patients were included in the training and validation sets, respectively. The predictive model included age, body mass index, diabetes duration, systolic blood pressure (SBP), diastolic blood pressure (DBP), low-density lipoprotein cholesterol, serum uric acid, lipoprotein(a), hypertension history and alcohol drinking status as predictors. The AUC of the predictive model and that of the internal validation set was 0.830 [95% confidence interval (CI) 0.786-0.874] and 0.827 (95% CI 0.756-0.899), respectively. The predictive model showed very good fitting degree, and DCA demonstrated a clinically effective predictive model. CONCLUSIONS: A potent risk predictive model was established, which is of great value for the secondary prevention of diabetes. Weight loss, lowering of SBP and blood uric acid levels and appropriate control for DBP may significantly reduce the risk of new-onset ACS in T2DM patients in Northwest China.


Asunto(s)
Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/etiología , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/diagnóstico , Modelos Estadísticos , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/epidemiología , Anciano , Biomarcadores/sangre , Presión Sanguínea/fisiología , Índice de Masa Corporal , China/epidemiología , LDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Prevalencia , Pronóstico , Factores de Riesgo , Ácido Úrico/sangre
17.
Oncotarget ; 8(1): 658-663, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27893421

RESUMEN

Previous studies showed that PHACTR1 and SLC22A3 are involved in coronary vascular development and are key determinants of cardiovascular disease risk. We conducted a case-control study to examine the effect of SLC22A3 and PHACTR1 single nucleotide polymorphisms (SNPs) on CAD risk among 376 male CAD patients and 388 male healthy controls from China. Eleven SLC22A3 and PHACTR1 SNPs were selected and genotyped using Sequenom Mass-ARRAY technology. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression adjusting for age. The rs9381439 minor allele "A" (OR = 0.72; 95% CI = 0.54-0.96; p = 0.024) in an allelic model was associated with reduced CAD risk, as were the rs2048327 "C/C" (OR = 0.60; 95% CI: 0.37-0.97; p = 0.036) and rs1810126 "T/T" (OR = 0.58; 95% CI: 0.36-0.93; p = 0.024) genotypes. Likewise, the rs9349379 "A/G" genotype in a dominant model (p = 0.041), the rs1810126 "T/C" genotype in additive (p = 0.041) and recessive (p = 0.012) models, and the rs2048327 "C/T" genotype in a recessive model were associated with decreased CAD risk (p = 0.016). These results suggest several PHACTR1 and SLC22A3 polymorphisms are associated with decreased CAD risk in the male Chinese Han population.


Asunto(s)
Pueblo Asiatico/genética , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos/genética , Proteínas de Transporte de Catión Orgánico/genética , Polimorfismo de Nucleótido Simple , Anciano , Alelos , Estudios de Casos y Controles , China/epidemiología , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores Sexuales
18.
Oncotarget ; 7(50): 82046-82054, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27741513

RESUMEN

The goal of our study was to determine whether CDKN2BAS polymorphisms are associated with coronary heart disease (CHD) risk in a Han Chinese population. Eight SNPs were genotyped in 676 men and 465 women. We used χ2 tests and genetic model analyses to evaluate associations between the SNPs and CHD risk. We found that rs10757274 was associated with an increased risk of CHD in both men (allele G: Odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.05-1.61, P = 0.018; codominant model: P = 0.042; recessive model: OR = 1.70, 95% CI: 1.10-2.62, P = 0.016; log-additive model: OR = 1.34, 95% CI: 1.05-1.71, P = 0.019) and women (dominant model: OR = 2.26, 95% CI: 1.28-3.99, P = 0.004). In addition, rs7865618 was associated with an 8.10-fold increased risk of CHD in women under a recessive model (OR = 8.10, 95% CI: 1.74-37.68, P = 0.006). Interestingly, the haplotype AA (rs10757274 and rs1333042) of CDKN2BAS was associated with decreased the risk of CHD in men (OR = 0.72, 95% CI: 0.55 - 0.95, P = 0.022).


Asunto(s)
Enfermedad Coronaria/genética , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , China , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/etnología , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Heterocigoto , Homocigoto , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Fenotipo , Factores Protectores , Medición de Riesgo , Factores de Riesgo , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA