Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 19(39): e2301121, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37271929

RESUMEN

Optimizing catalysts for competitive photocatalytic reactions demand individually tailored band structure as well as intertwined interactions of light absorption, reaction activity, mass, and charge transport.  Here, a nanoparticulate host-guest structure is rationally designed that can exclusively fulfil and ideally control the aforestated uncompromising requisites for catalytic reactions. The all-inclusive model catalyst consists of porous Co3 O4 host and Znx Cd1- x S guest with controllable physicochemical properties enabled by self-assembled hybrid structure and continuously amenable band gap. The effective porous topology nanoassembly, both at the exterior and the interior pores of a porous metal-organic framework (MOF), maximizes spatially immobilized semiconductor nanoparticles toward high utilization of particulate heterojunctions for vital charge and reactant transfer. In conjunction, the zinc constituent band engineering is found to regulate the light/molecules absorption, band structure, and specific reaction intermediates energy to attain high photocatalytic CO2 reduction selectivity. The optimal catalyst exhibits a H2 -generation rate up to 6720 µmol g-1 h-1 and a CO production rate of 19.3 µmol g-1 h-1 . These findings provide insight into the design of discrete host-guest MOF-semiconductor hybrid system with readily modulated band structures and well-constructed heterojunctions for selective solar-to-chemical conversion.

2.
ACS Appl Mater Interfaces ; 15(23): 28073-28083, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37253255

RESUMEN

The development of aqueous zinc-ion batteries (AZIBs) still faces a huge challenge due to poor cycling stability and slow kinetics of the cathode material. In this work, we report an advanced cathode of Ti4+/Zr4+ as dual-supporting sites in Na3V2(PO4)3 with an expanded crystal structure, exceptional conductivity, and superior structural stability for AZIBs, which exhibits fast Zn2+ diffusion and excellent performance. The results of AZIBs afford remarkably high cycling stability (91.2% retention rate over 4000 cycles) and exceptional energy density (191.3 W h kg-1), outperforming most Na+ superionic conductor (NASICON)-type cathodes. Furthermore, different in/ex situ characterization techniques and theoretical studies reveal the reversible storage mechanism of Zn2+ in an optimal Na2.9V1.9Ti0.05Zr0.05(PO4)3 (NVTZP) cathode and demonstrate that Na+ defects together with Ti4+/Zr4+ sites can intrinsically contribute to the high electrical conductivity and low Na+/Zn2+ diffusion energy barrier of NVTZP. Moreover, the flexible soft-packaged batteries further demonstrate a superior capacity retention rate of 83.2% after 2000 cycles from the perspective of practicality.

3.
J Am Chem Soc ; 145(17): 9520-9529, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37076447

RESUMEN

Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 µmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.

4.
Nat Commun ; 14(1): 1147, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854683

RESUMEN

Cobalt coordinated covalent organic frameworks have attracted increasing interest in the field of CO2 photoreduction to CO, owing to their high electron affinity and predesigned structures. However, achieving high conversion efficiency is challenging since most Co related coordination environments facilitate fast recombination of photogenerated electron-hole pairs. Here, we design two kinds of Co-COF catalysts with oxygen coordinated Co atoms and find that after tuning of coordination environment, the reported Co framework catalyst with Co-O4 sites exhibits a high CO production rate of 18000 µmol g-1 h-1 with selectivity as high as 95.7% under visible light irradiation. From in/ex-situ spectral characterizations and theoretical calculations, it is revealed that the predesigned Co-O4 sites significantly facilitate the carrier migration in framework matrixes and inhibit the recombination of photogenerated electron-hole pairs in the photocatalytic process. This work opens a way for the design of high-performance catalysts for CO2 photoreduction.

5.
Environ Sci Pollut Res Int ; 30(7): 18921-18936, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36217053

RESUMEN

Manufacturing agglomeration promotes rapid economic development while also causing severe environmental pollution. This paper investigates the impact and mechanism of manufacturing agglomeration on haze pollution from the Chinese city level. Furthermore, we discuss the moderating effect and threshold effect of the three urban forms of urban external shape complexity, urban compactness, and urban fragmentation on the relationship between the two. The result shows the following: (1) The aggregation of the manufacturing industry presents an inverted U-shaped characteristic of promoting first and then inhibiting haze pollution in China's overall, eastern and central regions. (2) The complexity of the city's external shape and the city's fragmentation has a positive moderating effect on the relationship between manufacturing agglomeration and haze pollution. And urban fragmentation shows a negative moderating effect on the relationship between the two when the level of manufacturing agglomeration is on the right side of the inverted U-shaped curve. (3) The urban form shows a significant double threshold characteristic for haze pollution, increasing the complexity of the city's external shape and the city's fragmentation. The agglomeration of manufacturing shows the characteristics of first inhibiting and then promoting haze pollution. As urban compactness increases, the inhibitory effect of manufacturing agglomeration on haze pollution increases.


Asunto(s)
Contaminación del Aire , Contaminación del Aire/análisis , Contaminación Ambiental/análisis , Ciudades , Industria Manufacturera , Comercio , Desarrollo Económico , China
6.
ChemSusChem ; 15(6): e202102390, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35122400

RESUMEN

Mn3 O4 is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco-friendly, high security energy storage system, while those previously reported electrochemical capacities of Mn3 O4 are far from its theoretical value. In this work, Mn3 O4 nanoparticles and nitrogen-doped carbon dots (NCDs) are synthesized together through an in-situ hydrothermal route, and then calcined to be a nanocomposite in which Mn3 O4 nanoparticles are anchored on a nitrogen-doped carbon skeleton (designated as Mn3 O4 /NCDs). Although the carbon content is only 3.9 wt.% in the Mn3 O4 /NCDs, the NCDs-derived carbon skeleton provides an electrically conductive network and a stable structure. Such a special nanocomposite has a large specific surface area, plenty of active sites, excellent hydrophilicity and good electronic conductivity. Owing to these structural merits, the Mn3 O4 /NCDs electrode exhibits a preeminent specific capacity of 443.6 mAh g-1 and 123.3 mAh g-1 at current densities of 0.1 and 1.5 A g-1 in ZIBs, respectively, which are far beyond the bare Mn3 O4 nanoparticles synthesized under the similar condition. The electrochemical measurement results prove that carbon dots, as a new type of carbon nanomaterials, have strong ability to modify and improve the performance of existing electrode materials, which may push these electrode materials forward to practical applications.

7.
ACS Appl Mater Interfaces ; 12(26): 29549-29555, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32543846

RESUMEN

Development and comparison of the latent fingerprints (LFPs) are two major studies in detection and identification of LFPs, respectively. However, integrated research studies on both fluorescent materials for LFP development and digital-processing programs for LFP comparison are scarcely seen in the literature. In this work, highly efficient red-emissive carbon dots (R-CDs) are synthesized in one pot and mixed with starch to form R-CDs/starch phosphors. Such phosphors are comparable with various substrates and suitable for the typical powder dusting method to develop LFPs. The fluorescence images of the developed LFPs are handled with an artificial intelligence program. For the optimal sample, this program presents an excellent matching score of 93%, indicating that the developed sample has very high similarity with the standard control. Our results are significantly better than the benchmark obtained by the traditional method, and thus, both the R-CDs/starch phosphors and the digital processing program fit well for the practical applications.

8.
ACS Appl Mater Interfaces ; 12(20): 23010-23016, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32348116

RESUMEN

Li-air  batteries operated in ambient air are imperative toward real practical applications. However, the passivation of lithium metal anodes induced by attacking air hinders their long-term running, accelerating the degradation of Li-air batteries. Herein, a hydrogel-derived hierarchical porous carbon (HDHPC) layer with superhydrophobicity is proved as an effective Li-protective layer for a Li-air battery that suppresses the H2O attack and lithium dendrite formation during cycling. Accordingly, the HDHPC protective layer-based Li-air cell exhibits eminent cycling stability in ambient air [relative humidity (RH) of ∼40%], which is far better than that of the Li-air cell without the HDHPC protective layer. It is also demonstrated that the conversion of O2/Li2O2 in Li-air batteries adversely affects the decomposition of the byproduct and electrolyte. The usage of the HDHPC protective layer pioneers a new avenue of developing high-performance Li-air batteries in ambient air.

9.
ACS Appl Mater Interfaces ; 12(5): 5786-5792, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31971361

RESUMEN

Electric double layer capacitors (EDLCs) usually show high rate performance and long cycling spans but inferior specific capacitance, which are mainly created by restriction of the charge storage mechanism. To improve the capacitive performance, traditional methods include enlarging surface area, optimizing porous structures, and readjusting functional groups through heteroatom doping to electrode materials. Besides that, another promising approach is suggested, which is to enhance surface roughness of the electrode materials for ion storage and transport. To prove this view, two porous carbon materials were fabricated by activation-calcination methods, which allowed the materials to have identical surface area, porous structures, and surface composition but the surface roughness. Further electrochemical measurements exhibited that the optimal sample with higher roughness has remarkable specific capacitance (up to 562 F g-1), and the increment rate is more than 50% when compared with contrast sample (367 F g-1). Therefore, optimization of the surface roughness of electrode materials is another efficient route to make robust EDLCs.

10.
ACS Appl Mater Interfaces ; 11(15): 14085-14094, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30942998

RESUMEN

Non-noble metal-based bifunctional electrocatalysts for both oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) are an essential component of high-performance rechargeable Zn-air batteries (ZABs). Herein, we report a novel and simple method for preparing Co9S8 nanoparticles embedded in N and S codoped carbon materials with aid of carbon dots (CDs). CDs play a key role in distributing Co9S8 nanoparticles in the matrix uniformly and enhancing the specific surface area and the electric conductivity simultaneously. The obtained Co9S8/CD@NSC exhibits an excellent ORR and OER bifunctional catalytic activity and a great long-term durability, with a half-wave potential of 0.84 V versus reversible hydrogen electrode (RHE) for the ORR and a low potential of 1.62 V versus RHE at 10 mA cm-2, which outperform the popular Pt/C and RuO2 commercial catalysts. Moreover, the Co9S8/CD@NSC catalyst also displays a superior activity and cycling stability as a cathode material in ZABs, which is far better than Pt/C + RuO2 mixture catalysts. Such a ZAB shows a low charge/discharge voltage gap of 0.62 V and great cycling stability over 125 h at 10 mA cm-2.

11.
Sci Bull (Beijing) ; 64(7): 478-484, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659799

RESUMEN

The intense interest of Li-O2 battery stems from its ultrahigh theoretical energy density, but its application is still hindered by the issues of Li anode. Herein, RuO2-CNTs composite, a conventional O2 cathode catalyst in Li-O2 battery, is first utilized as an anode host for dendrite-free Li plating/stripping with high Coulombic efficiency. It is demonstrated that such excellent plating/stripping performance arises from the lithiophilicity characteristic of Ru nanoparticles (that is derived from the in-situ electrochemical conversion from RuO2 to Ru/Li2O) and buffer space provided by CNTs. Furthermore, the RuO2-CNTs electrode pre-deposited with limited Li (RuO2-CNTs@Li anode) is coupled with a RuO2-CNTs catalytic cathode to form a Li-O2 full cell, which displays an extended cycle life with dramatically improved energy density. The achieved cell shows a high stability of 200 cycles with RuO2-CNTs@Li anode (1 mg Li) that sheds light on the efficient utilization of Li anode in Li-O2 batteries.

12.
J Colloid Interface Sci ; 537: 716-724, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448201

RESUMEN

Carbon materials doped with heteroatoms are a class of cost-effective and stable electrocatalysts for oxygen reduction reactions (ORR), whose activities are mainly based on the heteroatom-related active sites. Besides the widely reported one-dimensional carbon nanotubes and two-dimensional graphene materials, carbon dots (CDs), as a new kind of zero-dimensional carbon materials, exhibit a range of unique structures and promising catalytic activities for ORR. In order to optimize the complex conditions of carbon-based catalysts, composites consisting of doped CDs and reduced graphene oxide (rGO) (designated as CD/rGO) are prepared hydrothermally, in comparison with directly doped rGO. All produced composites outperform their corresponding directly doped rGO counterparts in ORR measurements. It is noted that nitrogen and sulfur co-doped samples perform better than those doped by individual N or S. Mechanistic relationships between the ORR catalytic activities and the catalyst features are proposed, including type, location, bonding, fraction and synergistic effects of dopants, as well as the composition and structure of the carbon substrates. It is apparent that doping heteroatoms and constructing carbon substrates play a synergistic role in yielding high-performance carbon based catalysts.

13.
Adv Mater ; 31(5): e1806197, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30537033

RESUMEN

Hybrid supercapacitors generally show high power and long life spans but inferior energy densities, which are mainly caused by carbon negative electrodes with low specific capacitances. To improve the energy densities, the traditional methods include optimizing pore structures and modifying pseudocapacitive groups on the carbon materials. Here, another promising way is suggested, which has no adverse effects to the carbon materials, that is, constructing electron-rich regions on the electrode surfaces for absorbing cations as much as possible. For this aim, a series of hierarchical porous carbon materials are produced by calcinating carbon dots-hydrogel composites, which have controllable surface states including electron-rich regions. The optimal sample is employed as the negative electrode to fabricate hybrid supercapacitors, which show remarkable specific energy densities (up to 62.8-90.1 Wh kg-1 ) in different systems.

14.
Small ; 14(22): e1800612, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29709104

RESUMEN

Carbon dots (CDs) have tremendous potential applications in bioimaging, biomedicine, and optoelectronics. By far, it is still difficult to produce photoluminescence (PL) tunable CDs with high quantum yield (QY) across the entire visible spectrum and narrow the emission peak widths of CDs close to those of typical quantum dots. In this work, a series of CDs with tunable emission from 443 to 745 nm, quantum yield within 13-54%, and narrowed full width at half maximum (FWHM) from 108 to 55 nm, are obtained by only adjusting the reaction solvents in a one-pot solvothermal route. The distinct optical features of these CDs are based on their differences in the particle size, and the content of graphitic nitrogen and oxygen-containing functional groups, which can be modulated by controlling the dehydration and carbonization processes during solvothermal reactions. Blue, green, yellow, red, and even pure white light emitting films (Commission Internationale de L'Eclairage (CIE)= 0.33, 0.33, QY = 39%) are prepared by dispersing one or three kinds of CDs into polyvinyl alcohol with appropriate ratios. The near-infrared emissive CDs are excellent fluorescent probes for both in vitro and in vivo bioimaging because of their high QY in water, long-term stability, and low cytotoxicity.


Asunto(s)
Carbono/química , Luminiscencia , Puntos Cuánticos/química , Solventes/química , Animales , Color , Células HeLa , Humanos , Ratones , Espectroscopía de Fotoelectrones , Puntos Cuánticos/ultraestructura , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
15.
Langmuir ; 33(44): 12635-12642, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29039949

RESUMEN

Carbon dots (CDs) are a new class of photoluminescent (PL), biocompatible, environment-friendly, and low-cost carbon nanomaterials. Synthesis of highly efficient red-emitting carbon dots (R-CDs) on a gram scale is a great challenge at present, which heavily restricts the wide applications of CDs in the bioimaging field. Herein, R-CDs with a high quantum yield (QY) of 53% are produced on a gram scale by heating a formamide solution of citric acid and ethylenediamine. The as-prepared R-CDs have an average size of 4.1 nm and a nitrogen content of about 30%, with an excitation-independent emission at 627 nm. After detailed characterizations, such strong red fluorescence is ascribed to the contribution from the nitrogen- and oxygen-related surface states and the nitrogen-derived structures in the R-CD cores. Our R-CDs show good photostability and low cytotoxicity, and thus they are excellent red fluorescence probes for bioimaging both in vitro and in vivo.


Asunto(s)
Carbono/química , Fluorescencia , Nitrógeno , Oxígeno , Puntos Cuánticos
16.
ACS Appl Mater Interfaces ; 9(22): 18429-18433, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28537370

RESUMEN

Brightly red fluorescent carbon dots are synthesized hydrothermally and dissolved in diluted hydrochloric acid solution. Such carbon dots exhibit excitation-independent emission at about 620 nm with quantum yield over 10%, which is visible in daylight. After the carbon dots solution is sprayed to the fingerprints on various solid substrates and dried in air, clear fingerprints can be seen under an ultraviolet lamp and stay stable for 1 day. Detailed characterizations suggest that during the drying process, the coffee-ring effect and the electrostatic interactions between the carbon dots and the fingerprint residues prevent the typical aggregation-induced fluorescence quenching of carbon dots.

17.
ACS Appl Mater Interfaces ; 9(22): 18474-18481, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28541041

RESUMEN

ZnO@polymer core-shell nanoparticles are assembled into novel capsule shells with diameters of about 100 nm to load isotretinoin (ISO) with a capacity as high as 34.6 wt %. Although ISO, a widely used drug for acne treatment, by itself is not suitable for treating cancer because of its hydrophobicity, our ZnO-ISO composite showed much stronger anticancer activity. The improved cytotoxicity is ascribed to the synergistic effects of the ZnO@polymer and ISO, where the ZnO@polymer helps in the accumulation of ISO in cancer cells on the one hand, and on the other hand, ISO is released completely through ZnO decomposition under acidic conditions of cancer cells. Such a pH-triggered drug-delivery system exhibits a much improved killing of cancer cells in vitro in comparison with the benchmarks, Nintedanib and Crizotinib, two commercial drugs clinically applied against lung cancer.


Asunto(s)
Nanopartículas del Metal , Cápsulas , Sistemas de Liberación de Medicamentos , Isotretinoína , Óxido de Zinc
18.
Front Chem ; 5: 117, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29322042

RESUMEN

Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with their 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites arising from the thin wall thickness and high surface area.

19.
J Mater Chem B ; 5(26): 5272-5277, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32264113

RESUMEN

In this work, red-emitting carbon dots (R-CDs) with a high quantum yield (QY) of 28% in water were synthesized for the first time by heating an ethanol solution of pulp-free lemon juice. The obtained R-CDs were mono-dispersed with an average diameter of 4.6 nm, and exhibited excitation-independent emission at 631 nm. Meanwhile, these R-CDs featured low cytotoxicity and good photostability, which allow R-CDs to be employed as luminescent probes for in vitro/in vivo bioimaging. In addition, a detailed study on the physical properties and structural compositions of the sodium borohydride (NaBH4) reduced R-CDs with orange emission suggested that surface states on the R-CD surfaces and nitrogen-derived structures in the R-CD cores synergistically caused their intense red luminescence. The low-cost and eco-friendly synthesis method and favorable optical properties of R-CDs make these carbon dots promising for further applications, such as bioimaging and light-emitting diodes.

20.
Small ; 12(43): 5927-5934, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717150

RESUMEN

A series of carbon dots/NiCo2 O4 composites with various morphologies are prepared and tested for supercapacitors. These samples have good electrical conductivities and efficient ions transport paths, so they exhibit high specific capacitances, superior rate performances, and high cycling stabilities. The optimal composite for hybrid supercapacitor exhibits a high energy density up to 62.0 Wh kg-1 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA