Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 2834, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503981

RESUMEN

Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/metabolismo , Animales , Línea Celular Tumoral , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Resistencia a Antineoplásicos/genética , Técnicas de Silenciamiento del Gen , Humanos , Metilación , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Lett ; 415: 198-207, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29179998

RESUMEN

ELL2 is an androgen-responsive gene that is expressed by prostate epithelial cells and is frequently down-regulated in prostate cancer. Deletion of Ell2 in the murine prostate induced murine prostatic intraepithelial neoplasia and ELL2 knockdown enhanced proliferation and migration in C4-2 prostate cancer cells. Here, knockdown of ELL2 sensitized prostate cancer cells to DNA damage and overexpression of ELL2 protected prostate cancer cells from DNA damage. Knockdown of ELL2 impaired non-homologous end joining repair but not homologous recombination repair. Transfected ELL2 co-immunoprecipitated with both Ku70 and Ku80 proteins. ELL2 could bind to and co-accumulate with Ku70/Ku80 proteins at sites of DNA damage. Knockdown of ELL2 dramatically inhibited Ku70 and Ku80 recruitment and retention at DNA double-strand break sites in prostate cancer cells. The impaired recruitment of Ku70 and Ku80 proteins to DNA damage sites upon ELL2 knockdown was rescued by re-expression of an ELL2 transgene insensitive to siELL2. This study suggests that ELL2 is required for efficient NHEJ repair via Ku70/Ku80 in prostate cancer cells.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN , Interferencia de ARN , Factores de Elongación Transcripcional/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Doxorrubicina/farmacología , Rayos gamma , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku/metabolismo , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Elongación Transcripcional/metabolismo
3.
Cancer Res ; 77(10): 2674-2685, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28416484

RESUMEN

DNA single-strand breaks (SSB) are the most common form of DNA damage, requiring repair processes that to initiate must overcome chromatin barriers. The FACT complex comprised of the SSRP1 and SPT16 proteins is important for maintaining chromatin integrity, with SSRP1 acting as an histone H2A/H2B chaperone in chromatin disassembly during DNA transcription, replication, and repair. In this study, we show that SSRP1, but not SPT16, is critical for cell survival after ionizing radiation or methyl methanesulfonate-induced single-strand DNA damage. SSRP1 is recruited to SSB in a PARP-dependent manner and retained at DNA damage sites by N-terminal interactions with the DNA repair protein XRCC1. Mutational analyses showed how SSRP1 function is essential for chromatin decondensation and histone H2B exchange at sites of DNA strand breaks, which are both critical to prime chromatin for efficient SSB repair and cell survival. By establishing how SSRP1 facilitates SSB repair, our findings provide a mechanistic rationale to target SSRP1 as a general approach to selectively attack cancer cells. Cancer Res; 77(10); 2674-85. ©2017 AACR.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Cadena Simple , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Elongación Transcripcional/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Células HeLa , Histonas/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
4.
J Biol Chem ; 291(31): 16197-207, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27288411

RESUMEN

Multisubunit protein assemblies offer integrated functionalities for efficient cell signal transduction control. One example of such protein assemblies, the BRCA1-A macromolecular complex, couples ubiquitin recognition and metabolism and promotes cellular responses to DNA damage. Specifically, the BRCA1-A complex not only recognizes Lys(63)-linked ubiquitin (K63-Ub) adducts at the damaged chromatin but is endowed with K63-Ub deubiquitylase (DUB) activity. To explore how the BRCA1-A DUB activity contributes to its function at DNA double strand breaks (DSBs), we used RNAi and genome editing approaches to target BRCC36, the protein subunit that confers the BRCA1-A complex its DUB activity. Intriguingly, we found that the K63-Ub DUB activity, although dispensable for maintaining the integrity of the macromolecular protein assembly, is important in enforcing the accumulation of the BRCA1-A complex onto DSBs. Inactivating BRCC36 DUB attenuated BRCA1-A functions at DSBs and led to unrestrained DSB end resection and hyperactive DNA repair. Together, our findings uncover a pivotal role of BRCC36 DUB in limiting DSB processing and repair and illustrate how cells may physically couple ubiquitin recognition and metabolizing activities for fine tuning of DNA repair processes.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de la Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Línea Celular Tumoral , Enzimas Desubicuitinizantes , Humanos , Proteínas de la Membrana/genética , Ubiquitina/genética
5.
DNA Repair (Amst) ; 44: 76-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27233112

RESUMEN

Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN/genética , Recombinación Homóloga , ARN Polimerasa II/genética , Transcripción Genética , Disparidad de Par Base , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/metabolismo , Fase G1 , Inestabilidad Genómica , Humanos , Estrés Oxidativo , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II/metabolismo
6.
Cancer Discov ; 5(7): 752-67, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26069190

RESUMEN

UNLABELLED: ARID1A, SWI/SNF chromatin remodeling complex subunit, is a recently identified tumor suppressor that is mutated in a broad spectrum of human cancers. Thus, it is of fundamental clinical importance to understand its molecular functions and determine whether ARID1A deficiency can be exploited therapeutically. In this article, we report a key function of ARID1A in regulating the DNA damage checkpoint. ARID1A is recruited to DNA double-strand breaks (DSB) via its interaction with the upstream DNA damage checkpoint kinase ATR. At the molecular level, ARID1A facilitates efficient processing of DSB to single-strand ends and sustains DNA damage signaling. Importantly, ARID1A deficiency sensitizes cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with ARID1A-mutant tumors. SIGNIFICANCE: ARID1A has been identified as one of the most frequently mutated genes across human cancers. Our data suggest that clinical utility of PARP inhibitors might be extended beyond patients with BRCA mutations to a larger group of patients with ARID1A-mutant tumors, which may exhibit therapeutic vulnerability to PARP inhibitors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Daño del ADN , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Nucleares/deficiencia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Factores de Transcripción/deficiencia , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Femenino , Células HCT116 , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Proteínas Nucleares/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Factores de Transcripción/química , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Proc Natl Acad Sci U S A ; 112(27): E3495-504, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100862

RESUMEN

Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.


Asunto(s)
Ciclo Celular/genética , Daño del ADN , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Recombinación Homóloga , ARN/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , ADN Helicasas/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G1/genética , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku , Microscopía Confocal , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , ARN/metabolismo , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Fase de Descanso del Ciclo Celular/genética , Transcripción Genética
8.
J Virol ; 89(15): 7612-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972552

RESUMEN

UNLABELLED: Nasopharyngeal carcinoma (NPC) is closely associated with latent Epstein-Barr virus (EBV) infection. Although EBV infection of preneoplastic epithelial cells is not immortalizing, EBV can modulate oncogenic and cell death mechanisms. The viral latent membrane proteins 1 (LMP1) and LMP2A are consistently expressed in NPC and can cooperate in bitransgenic mice expressed from the keratin-14 promoter to enhance carcinoma development in an epithelial chemical carcinogenesis model. In this study, LMP1 and LMP2A were coexpressed in the EBV-negative NPC cell line HK1 and examined for combined effects in response to genotoxic treatments. In response to DNA damage activation, LMP1 and LMP2A coexpression reduced γH2AX (S139) phosphorylation and caspase cleavage induced by a lower dose (5 µM) of the topoisomerase II inhibitor etoposide. Regulation of γH2AX occurred before the onset of caspase activation without modulation of other DNA damage signaling mediators, including ATM, Chk1, or Chk2, and additionally was suppressed by inducers of DNA single-strand breaks (SSBs) and replication stress. Despite reduced DNA damage repair signaling, LMP1-2A coexpressing cells recovered from cytotoxic doses of etoposide; however, LMP1 expression was sufficient for this effect. LMP1 and LMP2A coexpression did not enhance cell growth, with a moderate increase of cell motility to fibronectin. This study supports that LMP1 and LMP2A jointly regulate DNA repair signaling and cell death activation with no further enhancement in the growth properties of neoplastic cells. IMPORTANCE: NPC is characterized by clonal EBV infection and accounts for >78,000 annual cancer cases with increased incidence in regions where EBV is endemic, such as southeast Asia. The latent proteins LMP1 and LMP2A coexpressed in NPC can individually enhance growth or survival properties in epithelial cells, but their combined effects and potential regulation of DNA repair and checkpoint mechanisms are relatively undetermined. In this study, LMP1-2A coexpression suppressed activation of the DNA damage response (DDR) protein γH2AX induced by selective genotoxins that promote DNA replication stress or SSBs. Expression of LMP1 was sufficient to recover cells, resulting in outgrowth of LMP1 and LMP1-2A-coexpressing cells and indicating distinct LMP1-dependent effects in the restoration of replicative potential. These findings demonstrate novel properties for LMP1 and LMP2A in the cooperative modulation of DDR and apoptotic signaling pathways, further implicating both proteins in the progression of NPC and epithelial malignancies.


Asunto(s)
Apoptosis , Daño del ADN , Infecciones por Virus de Epstein-Barr/fisiopatología , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/fisiopatología , Proteínas de la Matriz Viral/metabolismo , Carcinoma , Muerte Celular , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Histonas/genética , Histonas/metabolismo , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virología , Fosforilación , Proteínas de la Matriz Viral/genética
9.
Nat Commun ; 6: 6233, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25670504

RESUMEN

Non-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku. The crystal structure of PAXX is similar to those of XRCC4 and XLF. Importantly, PAXX-deficient cells are sensitive to DSB-causing agents. Moreover, epistasis analysis demonstrates that PAXX functions together with XLF in response to ionizing radiation-induced complex DSBs, whereas they function redundantly in response to Topo2 inhibitor-induced simple DSBs. Consistently, PAXX and XLF coordinately promote the ligation of complex but not simple DNA ends in vitro. Altogether, our data identify PAXX as a new NHEJ factor and provide insight regarding the organization of NHEJ factors responding to diverse types of DSB ends.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido , Animales , Antígenos Nucleares/metabolismo , Línea Celular , Pollos , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Células HEK293 , Humanos , Autoantígeno Ku , Espectrometría de Masas , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Homología Estructural de Proteína
10.
Cell Res ; 25(2): 225-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25601159

RESUMEN

Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Tirosina/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinib , Células HeLa , Humanos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Quinazolinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de los fármacos
11.
Nat Commun ; 5: 5513, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25423885

RESUMEN

Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase ß (Polß) and XRCC1 is thought to facilitate repair by recruiting Polß to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polß. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polß and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Línea Celular , Daño del ADN , ADN Polimerasa beta/genética , Proteínas de Unión al ADN/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Modelos Moleculares , Unión Proteica , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
12.
PLoS One ; 9(1): e84899, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454762

RESUMEN

During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endopeptidasas/metabolismo , Línea Celular , Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/deficiencia , Endopeptidasas/genética , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Recombinación Homóloga/efectos de la radiación , Humanos , Cinética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas , Rayos X/efectos adversos
13.
Nucleic Acids Res ; 42(3): 1671-83, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24170812

RESUMEN

MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3' side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5' side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Proteína del Grupo de Complementación A de la Anemia de Fanconi/química , Humanos , Metoxaleno/farmacología
14.
Nucleic Acids Res ; 42(4): 2330-45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24293652

RESUMEN

Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (∼ 90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero- or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA- and transcription activation-dependent manner. These results indicate that oxidative DNA damage is differentially processed within hetero or euchromatin.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Eucromatina/metabolismo , Heterocromatina/metabolismo , Línea Celular , Cromatina/metabolismo , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , Eucromatina/enzimología , Endonucleasas de ADN Solapado/metabolismo , Genoma , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/efectos de la radiación , Heterocromatina/enzimología , Humanos , Rayos Láser , Oxidación-Reducción , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Elementos de Respuesta , Transactivadores/genética , Transactivadores/metabolismo
15.
Mol Cell ; 53(1): 101-14, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24289923

RESUMEN

The breast and ovarian cancer-specific tumor suppressor BRCA1, along with its heterodimer partner BRCA1-associated RING domain protein (BARD1), plays important roles in DNA repair, centrosome regulation, and transcription. To explore further functions of BRCA1/BARD1, we performed mass spectrometry analysis and identified Obg-like ATPase 1 (OLA1) as a protein that interacts with the carboxy-terminal region of BARD1. OLA1 directly bound to the amino-terminal region of BRCA1 and γ-tubulin. OLA1 localized to centrosomes in interphase and to the spindle pole in mitotic phase, and its knockdown resulted in centrosome amplification and the activation of microtubule aster formation. OLA1 with a mutation observed in breast cancer cell line, E168Q, failed to bind BRCA1 and rescue the OLA1 knockdown-induced centrosome amplification. BRCA1 variant I42V also abrogated the binding of BRCA1 to OLA1. These findings suggest that OLA1 plays an important role in centrosome regulation together with BRCA1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteína BRCA1/metabolismo , Neoplasias de la Mama/metabolismo , Centrosoma/metabolismo , Proteínas de Unión al GTP/metabolismo , Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Proteínas de Unión al GTP/genética , Técnicas de Silenciamiento del Gen , Humanos , Mutación Missense , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Cell Sci ; 126(Pt 19): 4414-23, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23868975

RESUMEN

Single-strand breaks (SSBs) are the most common type of oxidative DNA damage and they are related to aging and many genetic diseases. The scaffold protein for repair of SSBs, XRCC1, accumulates at sites of poly(ADP-ribose) (pAR) synthesized by PARP, but it is retained at sites of SSBs after pAR degradation. How XRCC1 responds to SSBs after pAR degradation and how this affects repair progression are not well understood. We found that XRCC1 dissociates from pAR and is translocated to sites of SSBs dependent on its BRCTII domain and the function of PARG. In addition, phosphorylation of XRCC1 is also required for the proper dissociation kinetics of XRCC1 because (1) phosphorylation sites mutated in XRCC1 (X1 pm) cause retention of XRCC1 at sites of SSB for a longer time compared to wild type XRCC1; and (2) phosphorylation of XRCC1 is required for efficient polyubiquitylation of XRCC1. Interestingly, a mutant of XRCC1, LL360/361DD, which abolishes pAR binding, shows significant upregulation of ubiquitylation, indicating that pARylation of XRCC1 prevents the poly-ubiquitylation. We also found that the dynamics of the repair proteins DNA polymerase beta, PNK, APTX, PCNA and ligase I are regulated by domains of XRCC1. In summary, the dynamic damage response of XRCC1 is regulated in a manner that depends on modifications of polyADP-ribosylation, phosphorylation and ubiquitylation in live cells.


Asunto(s)
Roturas del ADN de Cadena Simple , Proteínas de Unión al ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Reparación del ADN , Células HEK293 , Células HeLa , Humanos , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Transfección , Ubiquitinación , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
17.
PLoS One ; 7(11): e49687, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166748

RESUMEN

The maintenance of genomic stability requires accurate genome replication, repair of DNA damage, and the precise segregation of chromosomes in mitosis. GEN1 possesses Holliday junction resolvase activity in vitro and presumably functions in homology driven repair of DNA double strand breaks. However, little is currently known about the cellular functions of human GEN1. In the present study we demonstrate that GEN1 is a novel centrosome associated protein and we characterize the various phenotypes associated with GEN1 deficiency. We identify an N-terminal centrosome localization signal in GEN1, which is required and sufficient for centrosome localization. We report that GEN1 depletion results in aberrant centrosome numbers associated with the formation of multiple spindle poles in mitosis, an increased number of cells with multi-nuclei, increased apoptosis and an elevated level of spontaneous DNA damage. We find homologous recombination severely impaired in GEN1 deficient cells, suggesting that GEN1 functions as a Holliday junction resolvase in vivo as well as in vitro. Complementation of GEN1 depleted cells with various GEN1 constructs revealed that centrosome association but not catalytic activity of GEN1 is required for preventing centrosome hyper-amplification, formation of multiple mitotic spindles, and multi-nucleation. Our findings provide novel insight into the biological functions of GEN1 by uncovering an important role of GEN1 in the regulation of centrosome integrity.


Asunto(s)
Centrosoma/metabolismo , Inestabilidad Genómica , Resolvasas de Unión Holliday/metabolismo , Secuencia de Aminoácidos , Apoptosis , Línea Celular , Roturas del ADN de Doble Cadena , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/deficiencia , Recombinación Homóloga , Humanos , Mitosis , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
18.
Cancer Sci ; 102(10): 1840-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21756275

RESUMEN

BRCA1 is an important gene involved in susceptibility to breast and ovarian cancer and its product regulates the cellular response to DNA double-strand breaks. Here, we present evidence that BRCA1 also contributes to the transcription-coupled repair (TCR) of ultraviolet (UV) light-induced DNA damage. BRCA1 immediately accumulates at the sites of UV irradiation-mediated damage in cell nuclei in a manner that is fully dependent on both Cockayne syndrome B (CSB) protein and active transcription. Suppression of BRCA1 expression inhibits the TCR of UV lesions and increases the UV sensitivity of cells proficient in TCR. BRCA1 physically interacts with CSB protein. BRCA1 polyubiquitinates CSB and this polyubiquitination and subsequent degradation of CSB occur following UV irradiation, even in the absence of Cockayne syndrome A (CSA) protein. The depletion of BRCA1 expression increases the UV sensitivity of CSA-deficient cells. These results indicate that BRCA1 is involved in TCR and that a BRCA1-dependent polyubiquitination pathway for CSB exists alongside the CSA-dependent pathway to yield more efficient excision repair of lesions on the transcribed DNA strand.


Asunto(s)
Proteína BRCA1/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteína BRCA1/genética , Línea Celular Tumoral , ADN/genética , Enzimas Reparadoras del ADN/genética , Células HEK293 , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Rayos Ultravioleta
19.
Mol Cell Biol ; 28(24): 7380-93, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18936166

RESUMEN

BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.


Asunto(s)
Antígenos Nucleares/metabolismo , Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/efectos de la radiación , Fragmentos de Péptidos/metabolismo , Antígenos Nucleares/genética , Proteína BRCA1/genética , Línea Celular , Proteínas de Unión al ADN/genética , Femenino , Histonas/genética , Histonas/metabolismo , Humanos , Autoantígeno Ku , Rayos Láser , Mutación Missense , Fragmentos de Péptidos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...