Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328188

RESUMEN

PPTC7 is a mitochondrial-localized PP2C phosphatase that maintains mitochondrial protein content and metabolic homeostasis. We previously demonstrated that knockout of Pptc7 elevates mitophagy in a BNIP3- and NIX-dependent manner, but the mechanisms by which PPTC7 influences receptor-mediated mitophagy remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. On a molecular level, loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels in response to pseudohypoxia, a well-known inducer of mitophagy. This PPTC7-mediated suppression of BNIP3 and NIX protein expression requires an intact PP2C catalytic motif but is surprisingly independent of its mitochondrial targeting, indicating that PPTC7 influences mitophagy outside of the mitochondrial matrix. We find that PPTC7 exists in at least two distinct states in cells: a longer isoform, which likely represents full length protein, and a shorter isoform, which likely represents an imported, matrix-localized phosphatase pool. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments suggest that PPTC7 associates with BNIP3 and NIX within the native cellular environment. Importantly, these associations are enhanced in cellular conditions that promote BNIP3 and NIX turnover, demonstrating that PPTC7 is dynamically recruited to BNIP3 and NIX to facilitate their degradation. Collectively, these data reveal that a fraction of PPTC7 dynamically localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX.

2.
Nat Commun ; 14(1): 6431, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833277

RESUMEN

PPTC7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass and metabolic capacity with elevated hepatic triglyceride accumulation. Pptc7 knockout animals exhibit increased expression of the mitophagy receptors BNIP3 and NIX, and Pptc7-/- mouse embryonic fibroblasts (MEFs) display a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs, including multiple sites on BNIP3 and NIX, and our molecular studies demonstrate that PPTC7 can directly interact with and dephosphorylate these proteins. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that PPTC7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for PPTC7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.


Asunto(s)
Proteínas Mitocondriales , Mitofagia , Animales , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Fibroblastos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
3.
Science ; 369(6511)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32973005

RESUMEN

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Retículo Endoplásmico/enzimología , Membranas Mitocondriales/enzimología , ATPasas Tipo P/química , Proteínas de Saccharomyces cerevisiae/química , Microscopía por Crioelectrón , Células HeLa , Humanos , ATPasas Tipo P/genética , Conformación Proteica en Hélice alfa , Dominios Proteicos , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia
4.
Sci Rep ; 9(1): 825, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696850

RESUMEN

Bacterial ß-glucuronidase (GUS) enzymes cause drug toxicity by reversing Phase II glucuronidation in the gastrointestinal tract. While many human gut microbial GUS enzymes have been examined with model glucuronide substrates like p-nitrophenol-ß-D-glucuronide (pNPG), the GUS orthologs that are most efficient at processing drug-glucuronides remain unclear. Here we present the crystal structures of GUS enzymes from human gut commensals Lactobacillus rhamnosus, Ruminococcus gnavus, and Faecalibacterium prausnitzii that possess an active site loop (Loop 1; L1) analogous to that found in E. coli GUS, which processes drug substrates. We also resolve the structure of the No Loop GUS from Bacteroides dorei. We then compare the pNPG and diclofenac glucuronide processing abilities of a panel of twelve structurally diverse GUS proteins, and find that the new L1 GUS enzymes presented here process small glucuronide substrates inefficiently compared to previously characterized L1 GUS enzymes like E. coli GUS. We further demonstrate that our GUS inhibitors, which are effective against some L1 enzymes, are not potent towards all. Our findings pinpoint active site structural features necessary for the processing of drug-glucuronide substrates and the inhibition of such processing.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Glucurónidos/metabolismo , Bacteroides/enzimología , Dominio Catalítico , Clostridiales/enzimología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Faecalibacterium prausnitzii/enzimología , Tracto Gastrointestinal/metabolismo , Humanos , Lacticaseibacillus rhamnosus/enzimología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...