Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1255354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766786

RESUMEN

Objective: This study investigates the effect of a bilateral (paralyzed side, healthy side) plantar contact task on dorsolateral prefrontal activation in patients recovering from cerebral infarction under open and closed eye conditions. Methods: We selected 10 patients with cerebral infarction, admitted to the neurorehabilitation center of Beijing Rehabilitation Hospital, affiliated with Capital Medical University, from January 2019 to July 2020, who met our established criteria. Under open-eye and closed-eye conditions, the paralyzed and healthy sides performed the plantar contact tasks separately. The dorsolateral prefrontal region was monitored simultaneously with functional near-infrared spectroscopy (fNIRS), and activation was analyzed according to the curve-type changes of oxyhemoglobin and deoxyhemoglobin changes in the dorsolateral prefrontal cortex with 560 near-infrared monitoring channels. Results: After stratifying the data based on the eyes-open and eyes-closed conditions, some degree of heterogeneity was observed between the layers. Under the eyes-closed condition, the Pearson χ2 was 0.142, with a p value of 0.706, indicating no significant impact of the eyes-closed condition on the activation of the dorsolateral prefrontal cortex during the plantar task, whether performed on the paralyzed or the healthy side.In contrast, the Pearson χ2 value was 15.15 for the eyes-open condition, with a p value of 0.002. This suggests that carrying out the plantar task, either on the paralyzed or the healthy side, with eyes open significantly influenced the activation of the dorsolateral prefrontal cortex. Furthermore, activation of the dorsolateral prefrontal cortex was 1.55 times higher when the task was executed with the paralyzed side compared to the healthy side. This implies that the paralyzed side was more likely to activate the dorsolateral prefrontal lobe when performing the plantar contact task under eyes-open conditions. Conclusion: Observations via fNIRS revealed that the plantar contact task elicited dorsolateral prefrontal cortex activation. Moreover, the activation effect was intensified when performed on the paralyzed side under eyes-open conditions. Therapeutic methods that leverage these findings-namely cognitive-motor therapies that promote the recovery of motor functions by activating cognitive control brain regions via perception (information construction)-may hold promise.

2.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771530

RESUMEN

Early and accurate prediction of grain yield is of great significance for ensuring food security and formulating food policy. The exploration of key growth phases and features is beneficial to improving the efficiency and accuracy of yield prediction. In this study, a hybrid approach using the WOFOST model and deep learning was developed to forecast corn yield, which analysed yield prediction potential at different growth phases and features. The World Food Studies (WOFOST) model was used to build a comprehensive simulated dataset by inputting meteorological, soil, crop and management data. Different feature combinations at various growth phases were designed to forecast yield using machine learning and deep learning methods. The results show that the key features of corn's vegetative growth stage and reproductive growth stage were growth state features and water-related features, respectively. With the continuous advancement of the crop growth stage, the ability to predict yield continued to improve. Especially after entering the reproductive growth stage, corn kernels begin to form, and the yield prediction performance is significantly improved. The performance of the optimal yield prediction model in flowering (R2 = 0.53, RMSE = 554.84 kg/ha, MRE = 8.27%), in milk maturity (R2 = 0.89, RMSE = 268.76 kg/ha, MRE = 4.01%), and in maturity (R2 = 0.98, RMSE = 102.65 kg/ha, MRE = 1.53%) were given. Thus, our method improves the accuracy of yield prediction, and provides reliable analysis results for predicting yield at various growth phases, which is helpful for farmers and governments in agricultural decision making. This can also be applied to yield prediction for other crops, which is of great value to guide agricultural production.

3.
Front Physiol ; 13: 994990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714308

RESUMEN

Objective: Menstrual disorders induced by high-temperature environments, can seriously damage women's reproductive health and workability. The regulation mechanism underlying it is not yet to be elucidated. Saliva is an information-rich biological fluid that can reflect systemic diseases. Here, we investigated the characteristics of menstrual cycle disorders and saliva metabolomics to provide a deeper insight of the regulation mechanism of young women in high-temperature environments. Methods: Women from high and normal temperature areas of China were selected and divided into two groups-high-temperature (H group) and control (C group). A questionnaire survey was conducted in summer (July) to investigate the incidence rate of menstrual disorders, characteristics of the disorders, and factors influencing the risk of these disorders in different regions. Metabolomics was applied to analyze the characteristics of the salivary metabolites and neurotransmitters in the two groups of women with menstrual disorders. Results: The incidence rate of menstrual disorders was significantly higher in the H group than that in the C group (p < 0.05). High-temperature environment, stress, and sleep quality were identified as critical factors associated with menstrual disorders. Non-targeted saliva metabolomics identified 64 significantly different metabolites between two groups, which mainly enriched in metabolic pathways such as carbohydrate metabolism, membrane transport, digestive system, and nucleotide metabolism (p < 0.05). N-acetylneuraminic acid, MYO, and tyramine may be candidate markers for early diagnosis of menstrual disorders in high temperature environments. Metabolites may be involving in the acute-phase response during an inflammatory process, to affecting the reproductive system by influencing the HPA axis loop. Regulations about oocyte membrane production and the luteal functions would be exerted in menstrual disorders. Targeted metabolomics of neurotransmitters revealed increased expression of histamine (HA) and glutamine and decreased expression of 5-hydroxyindole acetic acid (5-HIAA) (p < 0.05). Conclusion: Menstrual disorder characteristics induced by high temperature environments were specific. Anxiety, sleep quality and temperature feeling were the key factors to the menstrual disorder. endocrine regulation mechanism and inflammatory reactions might contribute to the development of menstrual disorders through influencing the formation of the follicular cell membrane.

4.
Front Cell Infect Microbiol ; 11: 595716, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738264

RESUMEN

Long term heat exposure (HE) leads to estrous cycle disorder (ECD) in female rats and damages reproductive function. However, the regulation mechanism of vaginal microorganisms and serum metabolomics remains unclear. This study aimed to explore the effects of microbes on the vaginal secretions of rats with ECD and describe the serum metabolomics characteristics and their relationship with vaginal microorganisms. The alterations in the serum levels of neurotransmitters were used to verify the possible regulatory pathways. The relative abundance, composition, and colony interaction network of microorganisms in the vaginal secretions of rats with ECD changed significantly. The metabolomics analysis identified 22 potential biomarkers in the serum including lipid metabolism, amino acid metabolism, and mammalian target of rapamycin and gonadotropin-releasing hormone (GnRH) signaling pathways. Further, 52 pairs of vaginal microbiota-serum metabolites correlations (21 positive and 31 negative) were determined. The abundance of Gardnerella correlated positively with the metabolite L-arginine concentration and negatively with the oleic acid concentration. Further, a negative correlation was found between the abundance of Pseudomonas and the L-arginine concentration and between the metabolite benzoic acid concentration and the abundance of Adlercreutzia. These four bacteria-metabolite pairs had a direct or indirect relationship with the estrous cycle and reproduction. The glutamine, glutamate, and dopamine levels were significantly uncontrolled. The former two were closely related to GnRH signaling pathways involved in the development and regulation of HE-induced ECD in rats. Serum neurotransmitters partly reflected the regulatory effect of vaginal microorganisms on the host of HE-induced ECD, and glutamatergic neurotransmitters might be closely related to the alteration in vaginal microorganisms. These findings might help comprehend the mechanism of HE-induced ECD and propose a new intervention based on vaginal microorganisms.


Asunto(s)
Calor , Metabolómica , Animales , ADN Ribosómico , Ciclo Estral , Femenino , Ratas , Ratas Sprague-Dawley
5.
Biomed Res Int ; 2020: 4701563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685488

RESUMEN

High-temperature exposure is detrimental to women's reproductive health; however, the impact caused by long-term high temperature is not comprehensive, and a stable model of estrous cycle disorder induced by a high temperature is yet lacking. Herein, we aimed to establish a stable and effective model of estrous cycle disorder in female rats induced by long-term heat stress to study its physiological and pathological characteristics and explore the underlying mechanism. In the present study, female Sprague-Dawley rats with normal estrous cycles were exposed to the temperature of 38 ± 0.5°C, relative humidity (RH) of 55 ± 5% (2 h/d, 1 time/d) hot cabin at more than 90 days. Consequently, after long-term heat stress, no difference was detected in body weight and rectal temperature, but the estrus cycle was prolonged, the uterine organ index was increased, pathological changes occurred, the increase latitude of stress hormones heat shock protein 70 (Hsp70) and corticosterone (CORT) decreased, estradiol (E2) and luteinizing hormone (LH) levels decreased, follicle stimulating hormone (FSH) and prolactin (Prl) levels increased, gonadotropin-releasing hormone (GnRH) and thyroid hormone (T4) showed no difference, and insulin (INS) decreased significantly. Moreover, the mRNA expression of the sex hormone receptor in the uterus and ovary was altered. Therefore, the estrous cycle disorder in female rats can be induced by regular heat stress for 90 days, which can be considered the pioneer method. Subsequently, prominent physiological and pathological characteristics and disruption in the hypothalamic-pituitary-gonadal (HPG) axis were noted.


Asunto(s)
Ciclo Estral/fisiología , Respuesta al Choque Térmico/fisiología , Animales , Ciclo Estral/genética , Femenino , Regulación de la Expresión Génica , Hormonas Esteroides Gonadales/metabolismo , Respuesta al Choque Térmico/genética , Calor , Especificidad de Órganos/genética , Ovario/metabolismo , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reproducción/genética , Factores de Tiempo , Útero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...