Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 745526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650583

RESUMEN

Active transposable elements (TEs) have drawn more attention as they continue to create new insertions and contribute to genetic diversity of the genome. However, only a few have been discovered in rice up to now, and their activities are mostly induced by artificial treatments (e.g., tissue culture, hybridization etc.) rather than under normal growth conditions. To systematically survey the current activity of TEs in natural rice accessions and identify rice accessions carrying highly active TEs, the transposon insertion polymorphisms (TIPs) profile was used to identify singleton insertions, which were unique to a single accession and represented the new insertion of TEs in the genome. As a result, 10,924 high-confidence singletons from 251 TE families were obtained, covering all investigated TE types. The number of singletons varied substantially among different superfamilies/families, perhaps reflecting distinct current activity. Particularly, eight TE families maintained potentially higher activity in 3,000 natural rice accessions. Sixty percent of rice accessions were detected to contain singletons, indicating the extensive activity of TEs in natural rice accessions. Thirty-five TE families exhibited potentially high activity in at least one rice accession, and the majority of them showed variable activity among different rice groups/subgroups. These naturally active TEs would be ideal candidates for elucidating the molecular mechanisms underlying the transposition and activation of TEs, as well as investigating the interactions between TEs and the host genome.

2.
Neuropharmacology ; 128: 388-400, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29104074

RESUMEN

Anxiety disorders represent serious social problems worldwide. Recent neuroimaging studies have found that elevated activity and altered connectivity of the insular cortex might account for the negative emotional states in highly anxious individuals. However, the exact synaptic mechanisms of specific insular subregions have yet to be studied in detail. To assess the electrophysiological properties of agranular insular cortex (AIC) neurons, basic synaptic transmission was recorded and different protocols were used to induce presynaptic and postsynaptic long-term potentiation in mice with anxiety-related behaviors. The presynaptic membrane expression of kainate receptors (KARs) and pharmacologic manipulations were quantified to examine the role of Gluk1 subtype in anxiety-like behaviors. Fear conditioning occludes electrically induced postsynaptic-LTP in the AIC. Quantal analysis of LTP expression in this region revealed a significant presynaptic component reflected by an increase in the probability of transmitter release. A form of presynaptic-LTP that requires KARs has been characterized. Interestingly, a simple emotional anxiety stimulus resulted in selective occlusion of presynaptic-LTP, but not of postsynaptic-LTP. Finally, injecting GluK1-specific antagonists into the AIC reduced behavioral responses to fear or anxiety stimuli in the mouse. These findings suggest that activity-dependent synaptic plasticity takes place in the AIC due to exposure to fear or anxiety, and inhibiting the presynaptic KAR function may help to prevent or treat anxiety disorder.


Asunto(s)
Ansiedad/patología , Corteza Cerebral/fisiología , Miedo/psicología , Potenciación a Largo Plazo/fisiología , Receptores de Ácido Kaínico/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Conducta Exploratoria/efectos de los fármacos , Ácido Glutámico/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Proteína 25 Asociada a Sinaptosomas/metabolismo , Valina/análogos & derivados , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...