Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 269: 116294, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508119

RESUMEN

Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.


Asunto(s)
Alcaloides , Productos Biológicos , Urocordados , Animales , Relación Estructura-Actividad , Resistencia a Múltiples Medicamentos , Mitocondrias , Urocordados/química , Alcaloides/química
2.
Burns Trauma ; 12: tkad051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250705

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.

3.
Front Pharmacol ; 13: 1020918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425577

RESUMEN

Stroke is a common disease in clinical practice, which seriously endangers people's physical and mental health. The neurovascular unit (NVU) plays a key role in the occurrence and development of ischemic stroke. Different from other classical types of cell death such as apoptosis, necrosis, autophagy, and pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form of cell death. Interestingly, the function of NVU and stroke development can be regulated by activating or inhibiting ferroptosis. This review systematically describes the NVU in ischemic stroke, provides a comprehensive overview of the regulatory mechanisms and key regulators of ferroptosis, and uncovers the role of ferroptosis in the NVU and the progression of ischemic stroke. We further discuss the latest progress in the intervention of ferroptosis as a therapeutic target for ischemic stroke and summarize the research progress and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion, ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is expected to become a new therapeutic target for this disease.

4.
World J Surg Oncol ; 20(1): 334, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203174

RESUMEN

BACKGROUND: AXL, a TAM tyrosine kinase receptor, plays an essential role in the pathogenesis of various solid tumours. This study explores the role of AXL and its ligand PROS1 in the generation and biological behaviour of papillary thyroid cancer (PTC). METHODS: The expression levels of AXL in PTC cancer tissue were analysed using immunohistochemistry (IHC) staining. The expression levels of AXL in PTC and normal thyroid cell lines were analysed using real-time quantitative polymerase chain reaction (RT-qPCR). CCK-8 was used to assess the proliferation of the PTC cell line with and without the effect of the AXL inhibitor (R428). Scratching assays played a role in evaluating the cell migration rate. RESULTS: PROS1 and AXL were expressed in TPC-1, B-CPAP, and Nthy-Ori 3-1 cells at different levels. Expression was significantly higher in PTC cell lines (TPC-1 and B-CPAP) than in the normal thyroid cell line (Nthy-Ori 3-1) (p < 0.05). In addition, AXL expression in PTC tissues was significantly higher than in adjacent normal tissues (p < 0.05). CCK-8 experiments confirmed that R428 suppresses the proliferation of PTC cell lines in a dose-dependent manner, with an increase in concentration from 0.5 to 4 µM, decreasing the inhibitory effect (p < 0.01). In addition, R428 inhibited PTC cell line migration to different degrees in a range of concentrations from 0.5 to 2 µM compared to control cells (p < 0.01). CONCLUSION: PROS1 and its downstream receptor AXL expression were significantly higher in PTC than in normal thyroid cells. AXL expression was also higher in human PTC tissues than in normal thyroid tissues. Inhibiting the PROS1-AXL-mediated TAM signaling pathway via the AXL blocker R428 suppressed the proliferation and migration of human PTC cells, highlighting the role of this cascade in human PTC development and progression.


Asunto(s)
Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias de la Tiroides , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Proteína S/metabolismo , Sincalida/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Tirosina Quinasa del Receptor Axl
5.
Oxid Med Cell Longev ; 2022: 9176923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923862

RESUMEN

The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.


Asunto(s)
Enfermedades Neurodegenerativas , Transmisión Sináptica , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neurotransmisores/análisis , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
6.
World J Clin Cases ; 9(28): 8453-8460, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34754853

RESUMEN

BACKGROUND: Granular cell tumor (GCT) is a neurogenic tumor mainly occurring in the head and neck. GCT in the genitourinary system is extremely rare and only sporadic cases of urinary bladder GCT have been reported. Most urinary bladder GCT cases are benign and only two malignant cases have been reported. Due to its rarity, no consensus criteria for the treatment of urinary bladder GCT are available at present. CASE SUMMARY: A 62-year-old Chinese woman was found to have a urinary bladder tumor without any clinical manifestations on physical examination. Cystoscopy revealed a semispherical shaped lesion measuring approximately 4.0 cm in diameter at the junction of the left wall and roof of the bladder, which was covered with normal bladder mucosa. Computed tomography scan demonstrated a high-density lesion on the left wall of the bladder, measuring approximately 2.9 cm × 2.4 cm with clear boundaries. Contrast-enhanced pelvic magnetic resonance imaging revealed a space-occupying lesion on the left wall of the bladder (non-mucosal origin/ external pressure), which was preliminarily suspected to be a desmoplastic fibroma or leiomyoma. In the context of the above findings, a pre-operative diagnosis of bladder leiomyoma was made. The patient consequently underwent a laparoscopic partial cystectomy. The resected bladder mass looked yellowish and well-demarcated, measuring 4.0 cm × 3.5 cm and infiltrated the muscular layer. The diagnosis of urinary bladder GCT was finally made by postoperative pathology, with positive immunohistochemical S-100 staining and negative pancytokeratin. The patient has been followed for 6 mo so far, with no tumor recurrence detected. CONCLUSION: This case highlights the biological feature and differential diagnosis of urinary bladder GCT at the pathological and molecular levels. Transurethral resection of the bladder tumor and partial cystectomy are recommended in most urinary bladder GCT cases, while radical cystectomy is recommended in malignant cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...