Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 202(10): 4459-4481, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38206494

RESUMEN

Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.


Asunto(s)
Inflamación , Metales , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Metales/efectos adversos , Metales/toxicidad , Animales , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Estrés Oxidativo/efectos de los fármacos , Enfermedades del Sistema Nervioso/inducido químicamente , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología
3.
Biol Trace Elem Res ; 201(1): 282-293, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35133610

RESUMEN

Lead (Pb), a corrosion-resistant heavy non-ferrous metal, is one of the most common environmental neurotoxic metals. The effects of Pb on other essential metal elements are contradictory. Therefore, this in vivo study addressed the effects of sub-chronic Pb exposure on the distribution of other divalent metals, exploring the relationships between Pb levels in blood, teeth, bones, hair, and brain tissues. Thirty-two healthy male C57BL/6 mice received intragastric administration (i.g.) with 0, 12.5, 25, and 50 mg/kg Pb acetate, once a day for 8 weeks. Levels of Pb and other metal elements [including iron(Fe), zinc (Zn), magnesium (Mg), copper (Cu), and calcium(Ca)] in the whole blood, teeth, the right thighbone, hair, and brain tissues (including cortex, hippocampus, striatum, and hypothalamus) were detected with inductively coupled plasma-mass spectrometry (ICP-MS). Pb levels in all detected organs were increased after Pb-exposed for 8 weeks. The results of relationship analysis between Pb levels in the tissues and lifetime cumulative Pb exposure (LCPE) showed that Pb levels in the blood, bone, and hair could indirectly reflect the Pb accumulation in the murine brain. These measures might serve as valuable biomarkers for chronic Pb exposure reflective of the accumulation of Pb in the central nervous system (CNS). Sub-chronic Pb exposure for 8 weeks altered Ca, Cu, Fe, and Zn levels, but no effects were noted on Mg levels in any of the analyzed tissues. Pb decreased Ca in teeth, Cu in thighbone and teeth, Zn in whole blood and hair, and Fe in hair. In contrast, Pb increased Ca levels in corpus striatum and hypothalamus, Cu levels in striatum, Zn levels in teeth, and Fe levels in hippocampus, thighbone, and teeth. The Pb-induced changes in metal ratios in various tissues may serve as valuable biomarkers for chronic Pb exposure as they are closely related to the accumulations of Pb in the murine CNS. The results suggest that altered distribution of several essential metal elements may be involved in Pb-induced neurotoxicity. Additional studies should address the interaction between Pb and essential metal elements in the CNS and other organs.


Asunto(s)
Plomo , Oligoelementos , Masculino , Ratones , Animales , Plomo/toxicidad , Cadmio/análisis , Ratones Endogámicos C57BL , Cobre/análisis , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...