Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; : 109837, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147179

RESUMEN

NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.

2.
Fish Shellfish Immunol ; 151: 109748, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964434

RESUMEN

The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 µM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.


Asunto(s)
Antivirales , Lubina , Infecciones por Virus ADN , Eugenol , Enfermedades de los Peces , Ranavirus , Animales , Eugenol/farmacología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Antivirales/farmacología , Lubina/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/tratamiento farmacológico , Ranavirus/fisiología , Bazo/inmunología , Bazo/efectos de los fármacos , Bazo/citología , Células Cultivadas
3.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969153

RESUMEN

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Glucósidos , Fenoles , Animales , Lubina/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Glucósidos/administración & dosificación , Glucósidos/farmacología , Fenoles/administración & dosificación , Fenoles/farmacología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Inmunidad Innata/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Distribución Aleatoria
4.
Fish Shellfish Immunol ; 149: 109522, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548190

RESUMEN

Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.


Asunto(s)
Berberina , Enfermedades de los Peces , Estrés Oxidativo , Replicación Viral , Berberina/farmacología , Animales , Estrés Oxidativo/efectos de los fármacos , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Replicación Viral/efectos de los fármacos , Inflamación/inmunología , Inflamación/veterinaria , Antivirales/farmacología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Ranavirus/fisiología , Línea Celular
5.
Int J Biol Macromol ; 258(Pt 2): 128860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123030

RESUMEN

Attributable to the rapid dissemination and high lethality of Singapore grouper iridovirus (SGIV), it has caused significant economic losses for marine fish aquaculture in China and Southeast Asian nations. Hence, there is an urgent need to find antiviral drugs that are both safe and effective. In this study, a novel heteropolysaccharide named Spirulina platensis polysaccharides (SPP) was purified and characterized from S. platensis. The molecular weight of SPP is 276 kDa and it mainly consists of Glc and Rha, followed by minor components such as Gal, Xyl, and Fuc. The backbone of SPP was determined to be →2) -ß-Rhap-(1 â†’ 4) -α-Fucp-(1 â†’ [2) -α-Rhap-(1] 2[→6)-α-Glcp-(1] 4[→ 4) -α-Glcp-(1] 8[→ 4) -ß-Glcp-(1]2→, with branches of ß-Galp, α-Xylp and α-Glcp. SPP significantly inhibited SGIV-induced cytopathic effects (CPEs), viral gene replication and viral protein expression. The antiviral mechanism of SPP was associated with the disruption of SGIV entry to host cells. Furthermore, it was not observed that SPP made statistically significant impact on the expression of interferon-related cytokines. Our results offered novel insights into the potential utilization of spirulina polysaccharides for combating aquatic animal viruses.


Asunto(s)
Lubina , Enfermedades de los Peces , Iridovirus , Spirulina , Animales , Iridovirus/genética , Singapur , Virión , Proteínas de Peces/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...