Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 53594-53603, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948678

RESUMEN

Mg3Sb2-based thermoelectric materials can convert heat and electricity into each other, making them a promising class of environmentally friendly materials. Further improving the electrical performance while effectively reducing the thermal conductivity is a crucial issue. In this paper, under the guidance of the oneness principle calculation, we designed a thermoelectric Zintl phase based on Mg3.2Sb1.5Bi0.5 doped with Tb and Er. Calculation results show that using Tb and Er as cationic site dopants effectively improves the electrical properties and reduces the lattice thermal conductivity. Experimental results confirmed the effectiveness of codoping and effectively enhanced thermoelectric performance. The most immense ZT value obtained by the Mg3.185Tb0.01Er0.005Sb1.5Bi0.5 sample was 1.71. In addition, the average Young's modulus of the Mg3.185Tb0.01Er0.005Sb1.5Bi0.5 sample is 51.85 GPa, and the Vickers hardness is 0.99 GPa. Under the same test environment, the material was subjected to 12 cycles in the temperature range of 323-723 K, and the average power factor error range was 1.8% to 2.1%, which is of practical significance for its application in actual device scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...