Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Transl Neurosci ; 9: 26-32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29992050

RESUMEN

BACKGROUND: The pathophysiology of early brain injury (EBI) after subarachnoid hemorrhage (SAH) is poorly understood. The present study evaluates the influence of zinc transporter 3 (ZnT3) knockout and the depletion of vesicular zinc on EBI. METHODOLOGY: SAH was induced in ZnT3 KO mice by internal carotid artery perforation. The changes in behavior were recorded at 24 hours after SAH. Hematoxylin-eosin, Nissl and TUNEL staining were performed to evaluate neuronal apoptosis. Data from mice with a score of 8-12 in intracerebral bleeding (i.e. moderate SAH), were analyzed. RESULTS: The degree of SAH-induced neuronal injury was directly correlated to the amount of blood lost, which in turn was negatively reflected in their behavior. The Wild Type (WT)-SAH group behaved poorly when compared to the knockout (KO)-SAH mice and their poor neurological score was accompanied by an increase in the number of apoptotic neurons. Conversely, the improvement of behavior in the KO-SAH group was associated with a marked reduction in apoptotic neurons. CONCLUSIONS: These results suggest that ZnT3 knockout may have played a vital role in the attenuation of neuronal injury after SAH and that ZnT3 may prove to be a potential therapeutic target for neuroprotection in EBI.

3.
Oncotarget ; 8(39): 65969-65982, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029486

RESUMEN

Epidermal growth factor (EGF) and EGF receptor (EGFR) play prominent roles in the metastasis of glioblastoma (GBM). However, the molecular mechanisms for the function of EGF and EGFR in GBM metastasis have not been elucidated. Herein, we demonstrate that coactivation of EGF and EGFR drives tumor metastasis in a matrix metalloproteinase-9 (MMP-9)-dependent manner. Expression levels of EGF, EGFR, and MMP-9 were substantially upregulated in the GBM and edema zones of patients, compared with those of paired unaffected participants. Secretion of EGF and MMP-9 was reduced in the cerebrospinal fluid (CSF) after removing GBM for 2 weeks by operation. To the mechanism, MMP-9 was upregulated by activating EGF and EGFR via PI3K/AKT- and ERK1/2-dependent pathways. Moreover, signal transducer and activator of transcription (STAT) 3 and STAT5 mediated the activation of NF-κB by PI3K/AKT and ERK1/2 pathways. This resulted in transactivation of MMP-9 in GBM. Finally, MMP-9 induction facilitated abnormal proliferation, migration, and invasion of cells, which contributed to GBM metastasis.

4.
Acta Neurochir (Wien) ; 154(8): 1469-76; discussion 1476, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22661329

RESUMEN

BACKGROUND: The c-Jun N-terminal kinase (JNK) proteins are encoded by three genes (JNK1, JNK2, and JNK3), giving rise to multiple isoforms via alternative splicing. JNK inhibition using a chemical inhibitor SP600125 confers neuroprotection in an animal model of subarachnoid hemorrhage (SAH). The aim of this study is to investigate whether the protective effects of SP600125 were associated with modulation of tight junction proteins including claudin-5 and ZO-1 and to define which JNK isoforms were involved in the early brain injury after SAH. METHODS: Seventy-five male Sprague Dawley rats (weighing 300-350 g) were randomly assigned to five groups (n = 15): (1) sham, (2) SAH, (3) SAH + DMSO (dimethyl sulfoxide), (4) SAH + 10 mg/kg SP600125, and (5) SAH + 30 mg/kg SP600125. SP600125 or DMSO was injected intraperitoneally 1 h before and 6 h after the induction of SAH. Animals from all the groups were killed 24 h after SAH, and brain tissues were dissected and subjected to electron microscopic examination, Western blot analysis, and histological evaluation. RESULTS: SP600125 pretreatment restored tight junctions and attenuated blood-brain barrier (BBB) disruption and cerebral edema after SAH, coupled with reduced apoptosis in the cerebral cortex. SP600125 exposure restored the reduced expression of both claudin-5 and ZO-1 following SAH and normalized the levels of JNK1 and JNK3. CONCLUSION: Our data demonstrate that the JNK signaling plays an important role in the regulation of tight junction proteins and BBB integrity, and thus represents a promising target against brain injuries after SAH.


Asunto(s)
Antracenos/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Claudina-5/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Hemorragia Subaracnoidea/tratamiento farmacológico , Proteína de la Zonula Occludens-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/patología , Uniones Estrechas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...