Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(25): eado2442, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905333

RESUMEN

Atomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.7 to 12.2 wt %). The effect of the morphology, composition, and crystal phase of the Ni-B host on the growth and dispersion of Pt atoms is discussed. The resulting amorphous Pt-Ni-B mesoporous nanospheres exhibit superior electrocatalytic H2 evolution performance in acidic media. This strategy holds the potential to synthesize a diverse library of mesoporous amorphous Pt-group SAAs, by leveraging functional amorphous nanostructured 3d transition-metal borides as substrates, thereby proposing a comprehensive strategy to control atomically dispersed Pt-group metals.

2.
Angew Chem Int Ed Engl ; : e202405571, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757486

RESUMEN

The rational design of efficient catalysts for uric acid (UA) electrooxidation, as well as the establishment of structure-activity relationships, remains a critical bottleneck in the field of electrochemical sensing. To address these challenges, herein, a hybrid catalyst that integrates carbon-supported Pt nanoparticles and nitrogen-coordinated Mn single atoms (PtNPs/MnNC) is developed. The metal-metal interaction during annealing affords the construction of metallic-bonded Pt-Mn pairs between PtNPs and Mn single atoms, facilitating the electron transfer from PtNPs to the support and thereby optimizing the electronic structure of catalysts. More importantly, experiments and theoretical calculations provide visual proof for the 'incipient hydrous oxide adatom mediator' mechanism for UA oxidation. The Pt-Mn pairs first adsorb OH* to construct the bridged Pt-OH-Mn mediators to serve as a highly active intermediate for N-H bond dissociation and proton transfer. Benefiting from the unique electronic and geometric structure of the catalytic center and reactive intermediates, PtNPs/MnNC exhibits superior electrooxidation performance. The electrochemical sensor based on PtNPs/MnNC enables sensitive detection and discrimination of UA and dopamine in serum samples. This work offers new insights into the construction of novel electrocatalysts for sensitive sensing platforms.

3.
ACS Appl Mater Interfaces ; 16(17): 22089-22101, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651674

RESUMEN

Alloy catalysts have been reported to be robust in catalyzing various heterogeneous reactions due to the synergistic effect between different metal atoms. In this work, aimed at understanding the effect of the coordination environment of surface atoms on the catalytic performance of alloy catalysts, a series of PtxCu1-x alloy model catalysts supported on anatase-phase TiO2 (PtxCu1-x/Ti, x = 0.4, 0.5, 0.6, 0.8) were developed and applied in the classic photocatalytic CO2 reduction reaction. According to the results of catalytic performance evaluation, it was found that the photocatalytic CO2 reduction activity on PtxCu1-x/Ti showed a volcanic change as a function of the Pt/Cu ratio, the highest CO2 conversion was achieved on Pt0.5Cu0.5/Ti, with CH4 as the main product. Further systematic characterizations and theoretical calculations revealed that the equimolar amounts of Pt and Cu in Pt0.5Cu0.5/Ti facilitated the generation of more Cu-Pt-paired sites (i.e., the higher coordination number of Pt-Cu), which would favor a bridge adsorption configuration of CO2 and facilitate the electron transfer, thus resulting in the highest photocatalytic CO2 reduction efficiency on Pt0.5Cu0.5/Ti. This work provided new insights into the design of excellent CO2 reduction photocatalysts with high CH4 selectivity from the perspective of surface coordination environment engineering on alloy catalysts.

4.
Chem Commun (Camb) ; 60(26): 3531-3534, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38450709

RESUMEN

We report a noble-metal-free photocatalyst, ultrathin TiO2 with atomic layer thickness, which is a potential catalyst for CO2 photoreduction. An excellent liquid-product yield of 463.9 µmol gcat-1 in 8 h with 98% selectivity to alcohols was achieved, owing to sufficient surface defects favoring CO2 adsorption/activation.

5.
Small ; : e2311172, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351480

RESUMEN

Ruthenium oxide is currently considered as the promising alternative to Ir-based catalysts employed for proton exchange membrane water electrolyzers but still faces the bottlenecks of limited durability and slow kinetics. Herein, a 2D amorphous/crystalline heterophase ac-Cr0.53 Ru0.47 O2-δ substitutional solid solution with pervasive grain boundaries (GBs) is developed to accelerate the kinetics of acidic oxygen evolution reaction (OER) and extend the long-term stability simultaneously. The ac-Cr0.53 Ru0.47 O2-δ shows a super stability with a slow degradation rate and a remarkable mass activity of 455 A gRu -1 at 1.6 V vs RHE, which is ≈3.6- and 5.9-fold higher than those of synthesized RuO2 and commercial RuO2 , respectively. The strong interaction of Cr-O-Ru local units in synergy with the specific 2D structural characteristics of ac-Cr0.53 Ru0.47 O2-δ dominates its enhanced stability. Meanwhile, high-density GBs and the shortened Ru-O bonds tailored by amorphous/crystalline structure and Cr-O-Ru interaction regulate the adsorption and desorption rates of oxygen intermediates, thus accelerating the overall acidic OER kinetics.

6.
Adv Mater ; 36(18): e2311535, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38278520

RESUMEN

Hydrogen peroxide (H2O2) is a crucial oxidant in advanced oxidation processes. In situ, photosynthesis of it in natural water holds the promise of practical application for water remediation. However, current photosynthesis of H2O2 systems primarily relies on oxygen reduction, leading to limited performance in natural water with low dissolved oxygen or anaerobic conditions found in polluted water. Herein, a novel photocatalyst based on conjugated polymers with alternating electron donor-acceptor structures and electron-withdrawing side chains on electron donors is introduced. Specifically, carbazole functions as the electron donor, triazine serves as the electron acceptor, and cyano acts as the electron-withdrawing side chain. Notably, the photocatalyst exhibits a remarkable solar-to-chemical conversion of 0.64%, the highest reported in natural water. Furthermore, even in anaerobic conditions, it achieves an impressive H2O2 photosynthetic efficiency of 1365 µmol g-1 h-1, surpassing all the reported photosynthetic systems of H2O2. This remarkable improvement is attributed to the effective relocation of the water oxidation active site from a high-energy carbazole to a low-energy acetylene site mediated by the side chains, resulting in enhanced O2 or H2O2 generation from water. This breakthrough offers a new avenue for efficient water remediation using advanced oxidation technologies in oxygen-limited environments, holding significant implications for environmental restoration.

7.
ACS Nano ; 18(5): 4308-4319, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38261610

RESUMEN

The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.

8.
Small ; 20(11): e2305459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37922532

RESUMEN

Electrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported. Controlled phytic acid etching of the carbon precursor introduces homogeneous atomic phosphorous and nitrogen doping, as well as a well-defined mesoporous structure. Subsequent ice-templated self-assembly triggers the formation of a 2D particle array superstructure. The atomic-level doping gives rise to high intrinsic activity, while the well-engineered porous structure and particle arrangement addresses the mass transport limitations at the microscopic particle level and macroscopic electrode level. As a result, the as-prepared electrocatalyst delivers outstanding performance toward oxygen reduction reaction in both acidic and alkaline media, which is better than recently reported state-of-the-art metal-free electrocatalysts. Molecular dynamics simulation together with extensive characterizations indicate that the performance enhancement originates from multi-scale structural synergy.

9.
Small ; 20(24): e2311136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148296

RESUMEN

Dual-engineering involved of grain boundaries (GBs) and oxygen vacancies (VO) efficiently engineers the material's catalytic performance by simultaneously introducing favorable electronic and chemical properties. Herein, a novel SnO2 nanoplate is reported with simultaneous oxygen vacancies and abundant grain boundaries (V,G-SnOx/C) for promoting the highly selective conversion of CO2 to value-added formic acid. Attributing to the synergistic effect of employed dual-engineering, the V,G-SnOx/C displays highly catalytic selectivity with a maximum Faradaic efficiency (FE) of 87% for HCOOH production at -1.2 V versus RHE and FEs > 95% for all C1 products (CO and HCOOH) within all applied potential range, outperforming current state-of-the-art electrodes and the amorphous SnOx/C. Theoretical calculations combined with advanced characterizations revealed that GB induces the formation of electron-enriched Sn site, which strengthens the adsorption of *HCOO intermediate. While GBs and VO synergistically lower the reaction energy barrier, thus dramatically enhancing the intrinsic activity and selectivity toward HCOOH.

10.
ACS Nano ; 18(1): 373-382, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38126305

RESUMEN

Improving catalytic performance relies heavily on the rational design of the spatial structure of electrocatalysts, achieved through exposure of active sites, acceleration of the charge/mass transfer rate, and confinement of the reactants. In this study, we have fabricated Co nanoparticles embedded in overhang eave-like hollow N-doped mesoporous carbon (Co@EMPC) by adjusting the thickness of mesoporous polydopamine (mPDA). Thanks to the abundance of short mesoporous channels within the porous structure and the tuned electronic properties resulting from heterojunction structures between metal and carbon, the prepared Co@EMPC provides increased accessibility to active sites and enhanced mass and charge transfer rates. These features contribute to superior performance in the oxygen reduction reaction (ORR), with a half-wave potential of 0.874 V vs RHE, as well as exceptional durability in alkaline media. This study introduces a useful approach to enhance the ORR using eave-like hollow nanoreactors.

11.
Transl Oncol ; 40: 101856, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134840

RESUMEN

Multiple myeloma (MM) is a lethal B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow and remains incurable due to disease relapse and drug resistance. Bone marrow adipocytes (BMAs) are emerging as playing active functions that can support myeloma cell growth and survival. The aim of this study is to investigate myeloma-mesenchymal stem cells (MSCs) interaction and the impact of such interactions on the pathogenesis of MM using in vitro co-culture assay. Here we provide evidence that MM cell up-regulated MSCs to express PPAR-γ and pushes MSCs differentiation toward adipocytes at the expense of osteoblasts in co-culture manner. The increased BMAs can effectively enhance MM cell to proliferation, migration, and chemoresistance via cell-cell contact and/or cytokines release regulated by PPAR-γ signal pathway. This effect was partially reversed in medium containing PPAR-γ antagonist G3335 and indicated that G3335 distorts the maturation of MSC-derived adipocytes and cytokines release by adipocytes through inhibition of PPAR-γ, a key transcriptional factor for the activation of adipogenesis, or cell to cell contact, or both. In meantime, we observed higher expression of adipocyte differentiation associated genes DLK1, DGAT1, FABP4, and FASN both in MSCs and MSC derived adipocytes, but the osteoblast differentiation-associated gene ALP was down regulated in MSCs. These finding mean that direct consequence of MM/MSC interaction that play a role in MM pathogenesis. Consistent with those in vitro results, our primary clinical observation also showed that bone marrow samples from MM patients had significantly higher bone adiposity in comparison with controls and the number of adipocytes decreased in those who were response to anti-MM therapy. Our finding suggested that BMAs may have an important contribution to MM progression, particularly in drugs resistant of MM cells, and plays an important contribution in MM bone disease and treatment failure, but more clinical studies are needed to confirm its role.

12.
Angew Chem Int Ed Engl ; 62(49): e202313392, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37853513

RESUMEN

Photocatalytic CO2 reduction to CH4 requires photosensitizers and sacrificial agents to provide sufficient electrons and protons through metal-based photocatalysts, and the separation of CH4 from by-product O2 has poor applications. Herein, we successfully synthesize a metal-free photocatalyst of a novel electron-acceptor 4,5,9,10-pyrenetetrone (PT), to our best knowledge, this is the first time that metal-free catalyst achieves non-sacrificial photocatalytic CO2 to CH4 and easily separable H2 O2 . This photocatalyst offers CH4 product of 10.6 µmol ⋅ g-1 ⋅ h-1 under non-sacrificial ambient conditions (room temperature, and only water), which is two orders of magnitude higher than that of the reported metal-free photocatalysts. Comprehensive in situ characterizations and calculations reveal a multi-step reaction mechanism, in which the long-lived oxygen-centered radical in the excited PT provides as a site for CO2 activation, resulting in a stabilized cyclic carbonate intermediate with a lower formation energy. This key intermediate is thermodynamically crucial for the subsequent reduction to CH4 product with the electronic selectivity of up to 90 %. The work provides fresh insights on the economic viability of photocatalytic CO2 reduction to easily separable CH4 in non-sacrificial and metal-free conditions.

13.
Cell Death Dis ; 14(10): 684, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845206

RESUMEN

Leukocyte-associated immunoglobulin-like receptor-1 (LAIR1), an immune receptor containing immunoreceptor tyrosine-based inhibiory motifs (ITIMs), has emerged as an attractive target for cancer therapy. However, the intrinsic function of LAIR1 in gliomas remains unclear. In this study, the poor prognosis of glioma patients and the malignant proliferation of glioma cells in vitro and in vivo were found to be closely correlated with LAIR1. LAIR1 facilitates focal adhesion kinase (FAK) nuclear localization, resulting in increased transcription of cyclin D1 and chemokines/cytokines (CCL5, TGFß2, and IL33). LAIR1 specifically supports in the immunosuppressive glioma microenvironment via CCL5-mediated microglia/macrophage polarization. SHP2Q510E (PTP domain mutant) or FAKNLM (non-nuclear localizing mutant) significantly reversed the LAIR1-induced growth enhancement in glioma cells. In addition, LAIR1Y251/281F (ITIMs mutant) and SHP2Q510E mutants significantly reduced FAK nuclear localization, as well as CCL5 and cyclin D1 expression. Further experiments revealed that the ITIMs of LAIR1 recruited SH2-containing phosphatase 2 (SHP2), which then interacted with FAK and induced FAK nuclear localization. This study uncovered a critical role for intrinsic LAIR1 in facilitating glioma malignant progression and demonstrated a requirement for LAIR1 and SHP2 to enhance FAK nuclear localization.


Asunto(s)
Citocinas , Glioma , Humanos , Quimiocinas , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Glioma/genética , Microambiente Tumoral
14.
Inorg Chem ; 62(39): 15824-15828, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37721412

RESUMEN

Metal-organic frameworks (MOFs) have been studied extensively in the catalytic field. However, the role of ligands in catalysis has been less well investigated. Here, an asymmetric ligand photocatalytic strategy for CO2 reduction in MOFs is first proposed. MOF-303(Al) with asymmetric ligands (pyrazolyldicarboxylic acid) exhibits synergistic catalytic effects. Specifically, pyrazoles participate in CO2 activation; i.e., pyrazole and µ2-OH form hydrogen bonds with CO2 to polarize C═O bonds. Furthermore, the lowest unoccupied molecular orbital (LUMO; A pyrazole) and highest occupied molecular orbital (HOMO; B pyrazole) act as the electron donor and acceptor to spatially separate the excited electron-hole, with A and B pyrazoles for CO2 and H2O adsorption to avoid competition, respectively. Owing to its advantages, MOF-303-modified g-C3N4 achieves nonsacrificial and transition-metal-free photocatalytic CO2 reduction to CO of 16.19 µmol·g-1·h-1, significantly higher than that of g-C3N4. This work provides fresh insights into asymmetric ligands in photocatalytic CO2 reduction.

15.
Adv Healthc Mater ; 12(27): e2301073, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37285868

RESUMEN

Developing functional nanomaterials for nonenzymatic glucose electrochemical sensing platforms is vital and challenging from the perspective of pathology and physiology. Accurate identification of active sites and thorough investigation of catalytic mechanisms are critical prerequisites for the design of advanced catalysts for electrochemical sensing. Herein, Cu aerogels are synthesized as a model system for sensitive nonenzymatic glucose sensing. The resultant Cu aerogels exhibit good catalytic activity for glucose electrooxidation with high sensitivity and a low detection limit. Significantly, in situ electrochemical investigations and Raman characterizations reveal the catalytic mechanism of Cu-based nonenzymatic glucose sensing. During the electrocatalytic oxidation of glucose, Cu(I) is electrochemically oxidized to generate Cu(II), and the resultant Cu(II) is spontaneously reduced back to Cu(I) by glucose, achieving the sustained Cu(I)/Cu(II) redox cycles. This study provides profound insights into the catalytic mechanism for nonenzymatic glucose sensing, which provides great potential guidance for a rational design of advanced catalysts in the future.


Asunto(s)
Técnicas Biosensibles , Cobre , Cobre/química , Técnicas Electroquímicas , Electrodos , Glucosa/química , Oxidación-Reducción
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 154-161, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36765493

RESUMEN

OBJECTIVE: To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM. METHODS: Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor. RESULTS: The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells. CONCLUSION: The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.


Asunto(s)
Mieloma Múltiple , Osteogénesis , Humanos , Osteogénesis/genética , Médula Ósea/metabolismo , Mieloma Múltiple/metabolismo , Resistencia a Antineoplásicos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/farmacología , Diferenciación Celular , Adipogénesis , Citocinas/metabolismo , Adipocitos/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , PPAR gamma/metabolismo , PPAR gamma/farmacología , Microambiente Tumoral
17.
Front Psychiatry ; 14: 1182657, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179254

RESUMEN

Objective: To investigate the correlations between thyroid function, renal function, and depression. Methods: Clinical data of 67 patients with Major depressive disorder (MDD) and 36 healthy control subjects between 2018 and 2021 were collected to compare thyroid and renal function. Thyroid and renal functions of depressed patients were then correlated with the Hamilton Depression Rating Scale (HAMD) and the Hamilton Anxiety Rating Scale (HAMA).Spearman correlation analysis was used to find the correlation between renal function, thyroid function, and depression. A logistic regression was performed to find significant predictors of depression. Results: Triiodothyronine protamine (T3), thyroxine (T4), free triiodothyronine protamine (FT3), uric acid, sodium, and anion gap were lower in the MDD group than in the control group (p < 0.05). Correlation analysis of thyroid function, renal function, and factor terms of HAMD in the MDD group suggested that diurnal variation, hopelessness, and depression level were positively correlated with thyrotropin (TSH) (p < 0.05). Cognitive disturbance, retardation, and depression level were negatively correlated with creatinine (p < 0.05). Diurnal variation was negatively correlated with sodium ion (p < 0.01); hopelessness and depression level were positively correlated with chloride ion (p < 0.05); diurnal variation, retardation, and depression level were negatively correlated with anion gap (p < 0.05). Diurnal variation (p < 0.01) and retardation (p < 0.05) were negatively correlated with osmolality. Cognitive disturbance and depression level were positively correlated with estimated glomerular filtration rate (eGFR) (p < 0.05). In the MDD group, correlation analysis of thyroid function, renal function, and HAMA factor terms suggested that the total HAMA score and anxiety level were positively correlated with chloride ion (p < 0.05); psychic anxiety, total HAMA score, and anxiety level were negatively correlated with anion gap (p < 0.05). Furthermore, a low level of anion gap was an independent risk factor for depression and anxiety levels (p < 0.05). Conclusion: Low thyroid function and reduced waste metabolized by the kidneys in patients with MDD suggest a low intake and low metabolism in depressed patients. In addition, subtle fluctuations in the anion gap in depressed patients were strongly correlated with the degree of depression and anxiety.

18.
Chem Sci ; 13(45): 13574-13581, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507158

RESUMEN

The large-scale application of nanozymes remains a significant challenge owing to their unsatisfactory catalytic performances. Featuring a unique electronic structure and coordination environment, single-atom nanozymes provide great opportunities to vividly mimic the specific metal catalytic center of natural enzymes and achieve superior enzyme-like activity. In this study, the spin state engineering of Fe single-atom nanozymes (FeNC) is employed to enhance their peroxidase-like activity. Pd nanoclusters (PdNC) are introduced into FeNC, whose electron-withdrawing properties rearrange the spin electron occupation in Fe(ii) of FeNC-PdNC from low spin to medium spin, facilitating the heterolysis of H2O2 and timely desorption of H2O. The spin-rearranged FeNC-PdNC exhibits greater H2O2 activation activity and rapid reaction kinetics compared to those of FeNC. As a proof of concept, FeNC-PdNC is used in the immunosorbent assay for the colorimetric detection of prostate-specific antigen and achieves an ultralow detection limit of 0.38 pg mL-1. Our spin-state engineering strategy provides a fundamental understanding of the catalytic mechanism of nanozymes and facilitates the design of advanced enzyme mimics.

19.
Anal Chim Acta ; 1235: 340510, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368819

RESUMEN

Developing effective electrocatalysts to achieve highly sensitive and selective detection of heavy metal ions is one of the challenges in the field of environmental monitoring. Herein, bismuth (Bi) metallene (Bi-ene) in atomic thickness is successfully synthesized and applied as a conceptual application in electrochemical sensors for the detection of lead ion (Pb2+) and cadmium ion (Cd2+) both individually and simultaneously, exhibiting superior sensitivity and anti-interference performance. Density functional theory (DFT) calculations reveal that the Bi-ene has a stronger adsorption capability for Pb and Cd than that of Bi nanosheets (Bi-NSs). This work not only achieves Bi-ene-based catalytic signal amplification for sensitive detection of heavy metal ions but also holds promising application of atomic scale materials in environmental monitoring.


Asunto(s)
Cadmio , Metales Pesados , Electrodos , Plomo , Iones , Bismuto
20.
Mikrochim Acta ; 189(11): 408, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205828

RESUMEN

A novel aptamer-AuNP-conjugated carboxymethyl chitosan-functionalized graphene oxide (CMC/GO@Apt-Au NP) probe was for the first time developed for the determination of Salmonella typhimurium (S. typhimurium). Owing to the conformational change of the aptamers in the presence of S. typhimurium, the Au NPs, which were pre-adsorbed on the aptamers through van der Waals forces, were released into the solution phase and induced the color change of the solution. As a result, S. typhimurium ranging from 102 to 107 CFU/mL was successfully identified using the designed assay with a limit of detection (LOD) of 10 CFU/mL. This low detection level allowed the sensitive recognition of S. typhimurium in milk samples within 40 min without sample pretreatment, a conclusion that agreed well with the traditional plate counting method. The developed method not only provides a rapid way for the determination of S. typhimurium with simplicity and sensitivity but also shows potential universality in the quantification of other pathogenic microorganisms.


Asunto(s)
Aptámeros de Nucleótidos , Quitosano , Colorimetría/métodos , Grafito , Salmonella typhimurium
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...