Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4078-4086, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802775

RESUMEN

Inner Mongolia autonomous region of China and Mongolia are the primary regions where Chinese and Mongolian medicine and its medicinal plant resources are distributed. In this study, 133 families, 586 genera, and 1 497 species of medicinal plants in Inner Mongolia as well as 62 families, 261 genera, and 467 species of medicinal plants in Mongolia were collected through field investigation, specimen collection and identification, and literature research. And the species, geographic distribution, and influencing factors of the above medicinal plants were analyzed. The results revealed that there were more plant species utilized for medicinal reasons in Inner Mongolia than in Mongolia. Hotspots emerged in Hulunbuir, Chifeng, and Tongliao of Inner Mongolia, while there were several hotspots in Eastern province, Sukhbaatar province, Gobi Altai province, Bayankhongor province, Middle Gobi province, Kobdo province, South Gobi province, and Central province of Mongolia. The interplay of elevation and climate made a non-significant overall contribution to the diversity of plant types in Inner Mongolia and Mongolia. The contribution of each factor increased significantly when the vegetation types of Inner Mongolia and Mongolia were broadly divided into forest, grassland and desert. Thus, the distribution of medicinal plant resources and vegetation cover were jointly influenced by a variety of natural factors such as topography, climate and interactions between species, and these factors contributed to and constrained each other. This study provided reference for sustainable development and rational exploitation of medicinal plant resources in future.


Asunto(s)
Plantas Medicinales , Humanos , Mongolia , Clima , Medicina Tradicional Mongoliana , China
2.
Front Pharmacol ; 13: 979890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339592

RESUMEN

Medicinal plant diversity (MPD) is an important component of plant diversity. Over-collection based on medicinal and economic value has the potential to damage the stability of the regional ecosystem. It is important to understand the current distribution of MPD and the factors influencing it. However, it is still unclear whether environmental and socioeconomic conditions have an impact on their distribution. We selected the Inner Mongolia as a representative study area which covers a wide area, accounting for 12.29% of China's national land area and 0.79% of the world's land area. At the same time, the region is a long-standing traditional medicinal area for Mongolians in China. Therefore, the region is significantly influenced by changes in environmental factors and socio-economic factors. We used 9-years field survey of the distribution of medicinal plants in Inner Mongolia for assessing the distribution of MPD as influenced by environmental and socioeconomic activities by combining spatial analyses, species distribution models, and generalized additive models. The results from the spatial analysis show that the western region of Inner Mongolia is the main cold spot area of the MPD, and the central-eastern and northeastern regions of Inner Mongolia are the main hot spot areas of the MPD. At the same time, the distribution of cold spots and hot spots of MPD is more obvious at large spatial scales, and with the refinement of spatial scales, the cold spots in scattered areas are gradually revealed, which is indicative for the conservation and development of MPD at different spatial scales. Under the future climate change of shared socioeconomic pathways (SSP), areas with high habitat suitability for medicinal plants remain mainly dominated by the Yellow River, Yin Mountains, and Greater Khingan Range. Notably, the SSP245 development pathway remains the most significant concern in either long- or short-term development. The nonlinear relationship between the driving factors of MPD at different spatial scales shows that temperature, precipitation and socioeconomic development do have complex effects on MPD. The presence of a certain temperature, altitude, and precipitation range has an optimal facilitation effect on MPD, rather than a single facilitation effect. This complex nonlinear correlation provides a reference for further studies on plant diversity and sustainable development and management. In this study, the spatial distribution of medicinal plant resources and the extent to which they are driven by ecological and socioeconomic factors were analyzed through a macroscopic approach. This provides a reference for larger-scale studies on the environmental and socioeconomic influences on the distribution of plant resources.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(4): 1311-1315, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31418398

RESUMEN

Abstract  Double-hit lymphoma (DHL) is a high-grade B-cell lymphoma with MYC and BCL-2/BCL-6 rearrangement, which is a invasive disease with a poor prognosis. FISH is the most important diagnostic method. There is no standard protocol for this disease yet. New therapeutic approaches including targeted therapy,checkpoint inhibitors and chimeric antigen receptor T-cell therapy are changing the paradigm of treatment for DHL. This review summarizes new developments in diagnosis and treatment of double-hit lymphoma.


Asunto(s)
Linfoma de Células B , Predisposición Genética a la Enfermedad , Humanos , Inmunoterapia Adoptiva , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-bcl-6 , Proteínas Proto-Oncogénicas c-myc
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(5): 1217-21, 2014 May.
Artículo en Chino | MEDLINE | ID: mdl-25095410

RESUMEN

Infrared Spectroscopy (IR) integrated with two dimensional correlation infrared spectroscopy (2DCOS IR) was employed to rapidly discriminate Dendrobium loddigesii Rolfes (DR) from different regions and harvesting periods. The results showed that the IR peaks around 1 035, 1 051, 1 078, 1 156, 1 500, 1 511 and 1 736 cm-1had perceptible differences among DRs from different regions, indicating that different DRs containing remarkable different compositions and contents of polysaccharides, ketones and esters. 2DCOS IR spectra of DRs from Vietnam, Yunnan, Guangxi, Guizhou each had seven, eight, eight, nine auto peaks, respectively; furthermore, DRs from Guagnxi had the strongest peak in 1 220 cm-1, which was distinguish to those of other DRs (980 cm -1). In the IR spectra of DRs from different harvest seasons, the wave number of key peaks in (1 034 approximately1 023)cm- 1, the wave number of minor peaks in (1 6174)cm-1, as well as the presence of peaks in 1 078(1 076, 1 079)cm-1, showed obvious periodic changes with the seasons, which indicated the accumulation of polysaccharides and ketones from DRs displayed an evident periodic variability discipline. The application of FTIR in DRs could facilitate acquiring their growth conditions, composition and content changes, which would be significant in rational exploitations and utilizations of DR


Asunto(s)
Dendrobium/química , Espectroscopía Infrarroja por Transformada de Fourier , China , Dendrobium/clasificación , Ésteres/química , Cetonas/química , Plantas Medicinales/química , Polisacáridos/química , Estaciones del Año , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA