Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982640

RESUMEN

Heme is a crucial component in endowing plant-based meat analogs with flavor and color. This study aimed to develop a green strategy for heme production by reducing fermentation off-odor and accelerating heme synthesis. First, an efficient CRISPR/Cas9n system was constructed in Bacillus amyloliquefaciens to construct the odor-reducing chassis cell HZC9nΔGPSU, and the odor substances including the branched-chain short fatty acids, putrescine, and ammonia were reduced by 62, 70, and 88%, respectively. Meanwhile, the hemA gene was confirmed to be the key gene for enhanced heme synthesis. Various hemA genes were compared to obtain the best gene dhemA, and the catalysis mechanism was explained by molecular docking simulation. After further expression of dhemA in HZC9nΔGPSU, the heme titer of HZC9nΔGPSU/pHY-dhemA reached 11.31 ± 0.51 mg/L, 1.70-fold higher than that of HZC9n/pHY-dhemA. The knockout of off-odor-related genes reduced the odor substances and enhanced the heme synthesis, which is promising for the green production of high-quality heme.

2.
Int J Biol Macromol ; 276(Pt 1): 133870, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009264

RESUMEN

A novel encapsulation system was designed, utilizing sodium alginate (SA) polysaccharide as the matrix and easily absorbed Fe2+ as the metal-organic framework, to construct microbead scaffolds with both high catechins (CA) and vitamin C (Vc) loading and antioxidant properties. The structure of microbead hydrocolloids was investigated using SEM, XPS, FTIR, XRD and thermogravimetry, and the antioxidant activity, in vitro digestion and the release of CA and Vc were evaluated. These results revealed that the microbead hydrocolloids SA-CA-Fe and SA-CA-Vc-Fe exhibited denser and stronger cross-linking structures, and the formation of inter- and intramolecular hydrogen and coordination bonds improved thermal stability. Moreover, SA-CA-Fe (44.9 % DPPH and 47.8 % ABTS) and SA-CA-Vc-Fe (89.9 % DPPH and 89.3 % ABTS) displayed strong antioxidant activity. Importantly, they were non-toxic in Caco2 cells. The SA-CA-Fe and SA-CA-Vc-Fe achieved significantly higher CA (56.9 and 62.7 %, respectively) and Vc (42.2 %) encapsulation efficiency while maintaining higher CA and Vc release in small intestinal environment. These results suggested that SA polysaccharide-based encapsulation system using Fe2+ framework as scaffold had greater potential for delivery and controlled release of CA and Vc than conventional hydrocolloids, which could provide new insights into the construction of high loading, safe, targeted polyphenol delivery system.

3.
Foods ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891005

RESUMEN

In this study, a novel strain for degrading chitin was identified as Bacillus paralicheniformis HL37, and the key chitinase CH1 was firstly mined through recombinant expression in Bacillus amyloliquefaciens HZ12. Subsequently, the sequence composition and catalytic mechanism of CH1 protein were analyzed. The molecular docking indicated that the triplet of Asp526, Asp528, and Glu530 was a catalytic active center. The enzymatic properties analysis revealed that the optimal reaction temperature and pH was 65 °C and 6.0, respectively. Especially, the chitinase activity showed no significant change below 55 °C and it could maintain over 60% activity after exposure to 85 °C for 30 min. Moreover, the optimal host strain and signal peptide were obtained to enhance the expression of chitinase CH1 significantly. As far as we know, it was the first time finding the highly efficient chitin-degrading enzymes in B. paralicheniformis, and detailed explanations were provided on the catalytic mechanism and enzymatic properties on CH1.

4.
J Hazard Mater ; 469: 133877, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452666

RESUMEN

Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation. Subsequently, whole genome sequencing of B. siamensis WD-32 was carried out to excavate important genes and enzymes involved, and the possible reduction mechanism of TSNAs was explored. More importantly, the reduction of TSNAs by B. siamensis was significantly promoted by knockout of narG gene. During the practical agricultural fermentation process of the cigar tobacco leaves, the treatment by the WD-32∆narG cells resulted in a 60% reduction of the total TSNAs content compared with the control, and the concentrations of the NNN and NNK were decreased by 69% and 59%, respectively. In summary, this study offers efficient strains for reduction of the TSNAs in cigar tobacco, and provides new insights into the reduction mechanism of TSNAs, which will promote the application of microbial methods in control of TSNAs and nitrite.


Asunto(s)
Bacillus , Nitrosaminas , Humanos , Nitrosaminas/análisis , Nitritos , Nicotiana/genética , Carcinógenos/análisis , Ingeniería Genética
5.
Nat Prod Res ; : 1-10, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38425101

RESUMEN

To obtain higher melanin production in liquid culture, culture conditions of Annulohypoxylon stygium (Lév.) Y.M. Ju, J.D. Rogers and H.M. Hsieh were optimised. The results showed that using single factor experiment and orthogonal test, the optimised production of melanin reached 2.20 g/L, which was 2.06 times higher than that of the control group. In addition, it was speculated that A. stygium melanin (AsM) was 3,4-dihydroxyphenylalanine (DOPA) melanin and showed an amorphous irregular structure. Moreover, it had good solubility in alkaline solution. AsM showed good antioxidant activity at a concentration of 500 mg/L, with DPPH, ABTS and OH radicals scavenging activities of 90.83%, 75.36% and 70.90%, respectively. AsM prevented alcohol-induced oxidative damage and oxidative stress in HepG2 cells by inhibiting the decrease of antioxidant key enzyme activity under alcohol stimulation. It was proved to have a great potential for application as a natural antioxidant and a substitute for synthetic pigments.

6.
Front Bioeng Biotechnol ; 12: 1383083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544979

RESUMEN

Due to the broad application and substantial market demand for proteases, it was vital to explore the novel and efficient protease resources. The aim of this study was to identify the novel protease for tobacco protein degradation and optimize the expression levels. Firstly, the tobacco protein was used as the sole nitrogen resource for isolation of protease-producing strains, and a strain with high protease production ability was obtained, identified as Bacillus velezensis WH-7. Then, the whole genome sequencing was conducted on the strain B. velezensis WH-7, and 7 proteases genes were mined by gene annotation analysis. By further heterologous expression of the 7 protease genes, the key protease HapR was identified with the highest protease activity (144.19 U/mL). Moreover, the catalysis mechanism of HapR was explained by amino acid sequence analysis. The expression levels of protease HapR were further improved through optimization of promoter, signal peptide and host strain, and the maximum protease activity reaced 384.27 U/mL in WX-02/pHY-P43-SPyfkD-hapR, increased by 167% than that of initial recombinant strain HZ/pHY-P43-SPhapR-hapR. This study identified a novel protease HapR and the expression level was significantly improved, which provided an important enzyme resource for the development of enzyme preparations in tobacco protein degradation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38381310

RESUMEN

Annulohypoxylon stygium melanin (AsM) has various functional properties such as antioxidant and anti-radiation, but its biological activity in vivo has not been fully investigated. In this study, we researched the effects of AsM on the protection against acute liver injury in mice and its mechanism. The results showed that AsM had no significant effect on body weight in mice but reduced the liver index. It was able to significantly decrease the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), the contents of triglyceride (TG) and total cholesterol (TC) in mice. Simultaneously, it raised the levels of superoxide dismutase (SOD), peroxidase (CAT), and glutathione peroxidase (GSH-Px), which obviously exceeded those of the EtOH group. AsM could significantly lower the levels of inflammatory factors, with inhibition rates of 68.30%, 29.0%, and 19.50% for IL-1ß, IL-6, and TNF-α, respectively. H&E and Oil red O staining also showed that AsM ameliorated liver damage and lipid accumulation in mice. The protective mechanism of AsM may be associated to the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway, which could activate the downstream antioxidant enzymes heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). These findings confirmed that AsM had an alleviating effect on alcoholic liver injury and provided new thoughts for the development of natural product.

8.
Int J Biol Macromol ; 258(Pt 1): 128702, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072341

RESUMEN

Phellinus linteus polysaccharides exhibit antitumor, immunomodulatory, anti-inflammatory, and antioxidant properties, mitigate insulin resistance, and enhance the diversity and abundance of gut microbiota. However, the bioactivities of P. linteus polysaccharides vary owing to the complex structure, thereby, limiting their application. Various processing strategies have been employed to modify them for improving the functional properties and yield. Herein, we compare the primary modes of extraction and purification employed to improve the yield and purity, review the structure-activity relationships, and discuss the application of P. linteus polysaccharides using nano-carriers for the encapsulation and delivery of various drugs to improve bioactivity. The limitations and future perspectives are also discussed. Exploring the bioactivity, structure-activity relationship, processing methods, and delivery routes of P. linteus polysaccharides will facilitate the development of functional foods and dietary supplements rich in P. linteus polysaccharides.


Asunto(s)
Basidiomycota , Basidiomycota/química , Polisacáridos/química , Relación Estructura-Actividad , Sistemas de Liberación de Medicamentos
9.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159929

RESUMEN

AIMS: Bacillus licheniformis AQ is an industrial strain with high production of alkaline protease (AprE), which has great industrial application value. However, how to regulate the production of AprE in the process of industrial fermentation is still not completely clear. Therefore, it is important to understand the metabolic process of AprE production in the industrial fermentation medium. METHODS AND RESULTS: In this study, transcriptome sequencing of the whole fermentation course was performed to explore the synthesis and regulation mechanism of AprE in B. licheniformis AQ. During the fermentation process, the AprE got continuously accumulated, reaching a peak of 42 020 U/mL at the fermentation endpoint (48 h). Meanwhile, the highly expressed genes were observed. Compared with the fermentation endpoint, there were 61 genes in the intersection of differentially expressed genes, functioning as catabolic processes, peptidases and inhibitors, chaperones, and folding catalysts. Furthermore, the protein-protein interactions network of AprE was constructed. CONCLUSION: This study provides important transcriptome information for B. licheniformis AQ and potential molecular targets for further improving the production of AprE.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Endopeptidasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Fermentación , Transcriptoma
10.
Foods ; 12(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959016

RESUMEN

To produce food-grade ice nucleators, a 3.77 kb ice nucleation gene (iceE) isolated from Pantoea agglomerans (Erwinia herbicola) was introduced into the Gram-positive microorganism Bacillus amyloliquefaciens for the first time. The differential scanning calorimetry (DSC) results indicated that recombined strain B9-INP was an effective ice nucleator for controlling the supercooling point of distilled water at low concentrations. In the presence of B9-INP cells, model food systems, including sucrose solution and sodium chloride solution, different pH solutions froze at a relatively high subzero temperature, thus increasing the supercooling point by 5.8~16.7 °C. Moreover, B9-INP also facilitated model and real food systems to freeze at -6 °C. This recombinant strain not only improved the freezing temperature of food systems but also shortened the total freezing time, thus saving energy and reducing consumption. The results suggest that B9-INP has great application potential in the frozen food industry.

11.
Foods ; 12(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37628083

RESUMEN

L-tyrosine is a key precursor for synthesis of various functional substances, but the microbial production of L-tyrosine faces huge challenges. The development of new microbial chassis cell and gene resource is especially important for the biosynthesis of L-tyrosine. In this study, the optimal host strain Bacillus amyloliquefaciens HZ-12 was firstly selected by detecting the production capacity of L-tyrosine. Subsequently, the recombinant expression of 15 prephenate dehydrogenase genes led to the discovery of the best gene, Bao-tyrA from B. amyloliquefaciens HZ-12. After the overexpression of Bao-tyrA, the L-tyrosine yield of the recombinant strain HZ/P43-Bao-tyrA reach 411 mg/L, increased by 42% compared with the control strain (HZ/pHY300PLK). Moreover, the nucleic acid sequence and deduced amino acid sequence of the gene Bao-tyrA were analyzed, and their conservative sites and catalytic mechanisms were proposed. Finally, the expression of Bao-tyrA was regulated through a promoter and 5'-UTR sequence to obtain the optimal expression elements. Thereby, the maximum L-tyrosine yield of 475 mg/L was obtained from HZ/P43-UTR3-Bao-tyrA. B. amyloliquefaciens was applied for the first time to produce L-tyrosine, and the optimal prephenate dehydrogenase gene Bao-tyrA and corresponding expression elements were obtained. This study provides new microbial host and gene resource for the construction of efficient L-tyrosine chassis cells, and also lays a solid foundation for the production of various functional tyrosine derivatives.

12.
Int J Biol Macromol ; 243: 125199, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285888

RESUMEN

Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improved the physicochemical characteristics and utilization of G. lucidum polysaccharides, and made them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.


Asunto(s)
Ganoderma , Reishi , Reishi/química , Polisacáridos/farmacología , Polisacáridos/química , Relación Estructura-Actividad , Fenómenos Químicos , Suplementos Dietéticos , Ganoderma/química
13.
Food Chem ; 421: 136183, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37116442

RESUMEN

Hemin has potential application value in plant-based meat analogues. However, mechanisms of interaction between hemin and plant protein are unclear. In this study, soy protein isolate (SPI) was applied to examine these interactions using multi-spectroscopic and molecular docking techniques. Additionally, the influence of hemin on emulsification of SPI was also explored. Fluorescence and UV-Vis spectra showed quenching of SPI by hemin was static, resulting in conformation changes on the surface amino acid residues, around which hydrophobicity was significantly reduced from 425.9 ± 16.2 to 108.9 ± 1.8 (p < 0.05). FTIR and CD spectra results suggested the protein secondary structure altered, and the content of α-helix and random coils increased by 1.13% and 1.43%, respectively. Furthermore, emulsifying properties of SPI were strengthened with increased hemin. This work improves our understanding of interactions between SPI and hemin and offer a theoretical basis for application of heme in plant-based meat analogues.


Asunto(s)
Hemina , Proteínas de Soja , Proteínas de Soja/química , Emulsiones/química , Simulación del Acoplamiento Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína
14.
ACS Synth Biol ; 12(1): 213-223, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36625512

RESUMEN

Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes. A transcription factor, MaR, located in the Monascus azaphilone biosynthetic gene cluster, was taken as a typical example. Nine DNA-binding residues of MaR were identified by molecular simulation and site-directed mutagenesis. We created five MaR multi-site saturation mutagenesis libraries consisting of 10743 MaR variants on the basis of five cognate promoters. A functional analysis revealed that all five tested promoters were orthogonally regulated by five different MaR variants, respectively. Furthermore, fine gene expression tunability and high signal sensitivity of this toolbox are demonstrated by introducing chemically inducible expression modules, designing synthetic promoter elements, and creating protein-protein interaction between MaRs. This study paves the way for a bottom-up approach to build orthogonal gene expression toolboxes.


Asunto(s)
Monascus , Monascus/genética , Monascus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Expresión Génica
15.
Appl Microbiol Biotechnol ; 107(4): 1391-1404, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640206

RESUMEN

In order to explore the relationship between sclerotial formation and antioxidant enzymes under abiotic stresses, the effects of abiotic stresses including temperature, pH value, osmotic pressure, limited nitrogen, and hydrogen peroxide (H2O2) on the activities of antioxidant enzymes, ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in Pleurotus tuber-regium were studied. Meanwhile, the sclerotial formation under these abiotic stress conditions was also investigated. It was found that low temperature, weak alkaline, appropriate osmotic stress, and H2O2 can promote sclerotial formation, and sclerotial formation always tended to occur when the activities of antioxidant enzymes were at a high value. During the prolonged low temperature stress, SOD acted mainly in the early stage of stress, while POD and CAT had higher activity in the middle and late stage. Moreover, the reverse transcription quantitative polymerase chain reaction (RT-qPCR) results showed that SOD.193 and POD.535 were significantly down-regulated in sclerotia, and CAT.1115 and POD.401 were up-regulated instead. These antioxidant enzyme genes played an important role in the sclerotial formation under low temperature stress. It is strongly suggested that antioxidant enzymes and abiotic stresses are closely related to sclerotial formation in P. tuber-regium. KEY POINTS: • Low temperature and H2O2 can promote sclerotial formation. • Sclerotia are more likely to form under high antioxidant enzyme activity. • POD.401, POD.535, SOD.193, and CAT.1115 are important for sclerotial formation.


Asunto(s)
Antioxidantes , Pleurotus , Antioxidantes/metabolismo , Peróxido de Hidrógeno/farmacología , Catalasa/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Peroxidasas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo
16.
Appl Microbiol Biotechnol ; 106(22): 7519-7530, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36221033

RESUMEN

Monascus azaphilones (MAs) have been extensively applied as natural food coloring agents. MAs are classified into three categories: yellow MAs (YMAs), orange MAs (OMAs), and red MAs with various biological activities. However, the exact biosynthetic mechanism of OMAs and YMAs are not thoroughly elucidated. Firstly, we identified four DNA-binding residues of transcription factor MrPigB and constructed a multi-site saturation mutagenesis library of MrPigB. Then, comparative metabolite and gene expression of the mutants revealed that two oxidoreductases MrPigE and MrPigF were responsible for the formation of YMAs and OMAs. Finally, the in vitro and in vivo assays demonstrated the opposite roles of MrPigE and MrPigF in conversion of OMAs to YMAs. To our knowledge, this is the first report of a binary oxidoreductase system for dynamic regulation of fungal secondary metabolite biosynthesis. Broadly, our work also demonstrates the transcription factor engineering strategy for elucidating the biosynthetic pathway of secondary metabolite. KEY POINTS: • MrPigE converts orange Monascus azaphilones to yellow Monascus azaphilones • MrPigF oxidizes intermediates to afford orange Monascus azaphilones • MrPigE and MrPigF constitute a binary system in Monascus azaphilones biosynthesis.


Asunto(s)
Monascus , Monascus/metabolismo , Oxidorreductasas/metabolismo , Pigmentos Biológicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Front Bioeng Biotechnol ; 10: 977215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110310

RESUMEN

Alkaline protease has been widely applied in food, medicine, environmental protection and other industrial fields. However, the current activity and yield of alkaline protease cannot meet the demand. Therefore, it is important to identify new alkaline proteases with high activity. In this study, we cloned a potential alkaline protease gene bsp-1 from a Bacillus subtilis strain isolated in our laboratory. BSP-1 shows the highest sequence similarity to subtilisin NAT (S51909) from B. subtilis natto. Then, we expressed BSP-1 in Bacillus amyloliquefaciens BAX-9 and analyzed the protein expression level under a collection of promoters. The results show that the P43 promoter resulted in the highest transcription level, protein level and enzyme activity. Finally, we obtained a maximum activity of 524.12 U/mL using the P43 promoter after fermentation medium optimization. In conclusion, this study identified an alkaline protease gene bsp-1 from B. subtilis and provided a new method for high-efficiency alkaline protease expression in B. amyloliquefaciens.

18.
World J Microbiol Biotechnol ; 38(12): 228, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149606

RESUMEN

Melanin is a secondary metabolite composed of complex heterogeneous polymers. Fungal melanin is considered to be a sustainable and biodegradable natural pigment and has a variety of functional properties and biological activities. On one hand, due to its own specific properties it can play the role of antioxidant, anti-radiation, adsorption, and photoprotection. On the other hand, it has good biological activities such as hepatoprotective effect, hypolipidemic effect and anti-cancer. Therefore, it is widely used in various fields of daily life, including dyeing, food, biomedical and commercial industry. It is conducive to environmental protection and human health. However, the insolubility of fungal melanin in water, acids and organic solvents has been an obstacle to its commercial applications. Thus, the chemical modification methods of fungal melanin are summarized to increase its solubility and expand the application fields. Although fungal melanin has been used in many industries, as the structure and function of fungal melanin and modified melanin are further studied, more functional properties and bioactivities are expected to be discovered for a wide range of applications in the future.


Asunto(s)
Antioxidantes , Melaninas , Antioxidantes/metabolismo , Antioxidantes/farmacología , Hongos/metabolismo , Humanos , Melaninas/química , Polímeros/metabolismo , Solventes , Agua/metabolismo
19.
Compr Rev Food Sci Food Saf ; 21(3): 2820-2842, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35478379

RESUMEN

Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.


Asunto(s)
Autofagia , Espermidina , Suplementos Dietéticos , Manipulación de Alimentos , Espermidina/farmacología
20.
J Agric Food Chem ; 70(5): 1589-1600, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35085438

RESUMEN

Fungal azaphilones have attracted considerable interest as they exhibit great potential in food and pharmacological industries. However, there is a severe bottleneck in the low production in wild strains and the ability to genetically engineer azaphilone-producing fungi. Using Monascus azaphilones (MAs) as an example, we demonstrate a systematic metabolic engineering strategy for improving the production of MAs. In this study, Monascus purpureus HJ11 was systematically engineered through a combination of promoter engineering, gene knockout, rate-limiting enzyme overexpression, repression of the competing pathway, enzyme engineering, and metabolic rebalance. The maximum yield and titer of MAs successfully increased to 906 mg/g dry cell weight (DCW) and 14.6 g/L, respectively, 2.6 and 3.7 times higher than those reported in the literature. Our successful model not only offers a practical and efficient way to improve the azaphilone production but also sheds light on the potential of systematic metabolic engineering in nonmodel fungi as a chassis for the production of high-value chemicals.


Asunto(s)
Monascus , Benzopiranos , Ingeniería Metabólica , Monascus/genética , Pigmentos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...