Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 259: 116408, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781698

RESUMEN

The effectiveness of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas14a1, widely utilized for pathogenic microorganism detection, has been limited by the requirement of a protospacer adjacent motif (PAM) on the target DNA strands. To overcome this limitation, this study developed a Single Primer isothermal amplification integrated-Cas14a1 biosensor (SPCas) for detecting Salmonella typhi that does not rely on a PAM sequence. The SPCas biosensor utilizes a novel primer design featuring an RNA-DNA primer and a 3'-biotin-modified primer capable of binding to the same single-stranded DNA (ssDNA) in the presence of the target gene. The RNA-DNA primer undergoes amplification and is blocked at the biotin-modified end. Subsequently, strand replacement is initiated to generate ssDNA assisted by RNase H and Bst enzymes, which activate the trans-cleavage activity of Cas14a1 even in the absence of a PAM sequence. Leveraging both cyclic chain replacement reaction amplification and Cas14a1 trans-cleavage activity, the SPCas biosensor exhibits a remarkable diagnostic sensitivity of 5 CFU/mL. Additionally, in the assessment of 20 milk samples, the SPCas platform demonstrated 100% diagnostic accuracy, which is consistent with the gold standard qPCR. This platform introduces a novel approach for developing innovative CRISPR-Cas-dependent biosensors without a PAM sequence.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Leche , Salmonella typhi , Técnicas Biosensibles/métodos , Salmonella typhi/aislamiento & purificación , Salmonella typhi/genética , Leche/microbiología , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN de Cadena Simple/química , Límite de Detección , Humanos , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/microbiología , ADN Bacteriano/genética , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación
2.
Anal Chim Acta ; 1271: 341470, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37328250

RESUMEN

Pathogen identification requires nucleic acid diagnosis with simple equipment and fast manipulation. Our work established an all-in-one strategy assay with excellent sensitivity and high specificity, Transcription-Amplified Cas14a1-Activated Signal Biosensor (TACAS), for the fluorescence-based bacterial RNA detection. The DNA as a promoter probe and a reporter probe directly ligated via SplintR ligase once specifically hybridized to the single-stranded target RNA sequence, with the ligation product transcribed into Cas14a1 RNA activators by T7 RNA polymerase. This forming sustained isothermal one-pot ligation-transcription cascade produced RNA activators constantly and enabled Cas14a1/sgRNA complex to generate fluorescence signal, thus leading to a sensitive detection limit of 1.52 CFU mL-1E. coli within 2 h of incubation time. TACAS was applied in contrived E. coli infected fish and milk samples, and a significant signal differentiation between positive (infected) and negative (uninfected) samples was reached. Meanwhile, E. coli colonization and transmit time in vivo were explored and the TACAS assay promoted the understanding of the infection mechanisms of the E. coli infection, demonstrating an excellent detection capability.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Animales , Escherichia coli/genética , ADN/genética , ARN Bacteriano
3.
Biosens Bioelectron ; 211: 114282, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597144

RESUMEN

CRISPR-Cas systems have been employed to detect a large variety of pathogenic microorganisms by simply changing the guide RNA sequence. However, these platforms usually rely on nucleic acid extraction and amplification to achieve good sensitivity. Herein, we developed a new platform for the highly specific and sensitive detection of live staphylococcus aureus (S. aureus) based on an Aptamer-based Cas14a1 Biosensor (ACasB), without the need for nucleic acid extraction or amplification. First, the S. aureus specific aptamer was hybrid with a blocker DNA. After the live S. aureus was added, the blocker can be released upon bacteria-aptamer binding. Finally, the released blocker can activate Cas14a1 protein by binding with the sgRNA to generate a change of fluorescent intensity. The ACasB indicates high specificity and sensitivity: it can directly distinguish 400 CFU/ml live S. aureus cells. Comparable to qPCR, the Cas14a1-aptamer biosensor can detect S. aureus with 100% accuracy in complex samples. Therefore, this ACasB for the on-site detection of live S. aureus can broaden its applications in food safety and environmental monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Infecciones Estafilocócicas , Aptámeros de Nucleótidos/química , ADN , Humanos , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus/química , Staphylococcus aureus/genética
4.
Angew Chem Int Ed Engl ; 60(45): 24241-24247, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34553468

RESUMEN

As a CRISPR-Cas system (clustered regularly interspaced short palindromic repeats and CRISPR associated proteins), Cas14a1 can cis/trans cleave single-stranded DNA (ssDNA). Here, we describe an unreported capacity of Cas14a1: RNA can trigger the trans ssDNA cleavage. This Cas14a1-based RNA-activated detection platform (Amplification, Transcription, Cas14a1-based RNA-activated trans ssDNA cleavage, ATCas-RNA) has an outstanding specificity for the detection of target RNAs with point mutation resolution, which is better than that of the Cas14a1-based ssDNA-activation. Using ATCas-RNA via a fluorophore quencher-labeled ssDNA reporter (FQ), we were able to detect 1 aM pathogenic nucleic acid within 1 h, and achieve 100 % accuracy with 25 milk samples. This platform can serve as a new tool for high-efficiency nucleic acid diagnostics. Importantly, this work can expand our understanding of Cas14a1 and inspire further mechanisms and applications of Class-2 Cas systems.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , ADN de Cadena Simple/metabolismo , ARN/metabolismo , Sistemas CRISPR-Cas , División del ADN , ADN de Cadena Simple/química , ARN/análisis
5.
Biosens Bioelectron ; 189: 113350, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049081

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas) based biosensing system provides a novel genomic diagnostic tool for pathogenic detection. However, most of the discovered Cas effectors have poor single strand DNA (ssDNA) target recognition capability with the constraint of protospacer adjacent motif (PAM) sites, which are not suitable for universal pathogenic diagnosis. Herein, we developed a highly sensitive and specific fluorescence tool for bacterial detection by utilizing the unique collateral cleavage activity of a Cas14a1-mediated nucleic acid detection platform (CMP). We combine CMP with molecular amplification to build a CRISPR-Cas based bioanalysis technique, offering fast nucleic acid detection with high sensitivity and specificity. This technique can identify different species of pathogens in milk samples with excellent accuracy. The CMP technique is a promising platform for pathogenic genomic diagnostic in biomedicine and food safety field.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas
6.
Biosens Bioelectron ; 185: 113262, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930753

RESUMEN

Nucleic acid-based diagnosis using CRISPR-Cas associated enzymes is essential for rapid infectious disease diagnosis and treatment strategies during a global pandemic. The obstacle has been blossomed CRIPSR-Cas based tools that can monitor wide range of pathogens in clinical samples with ultralow concentrations. Here, a universal nucleic acid magneto-DNA nanoparticle system was exploited for the detection of pathogenic bacteria, based on the collateral cleavage activity of CRISPR-Cas14a and tag-specific primer extension. In the system, the target nucleic acids were amplificated and be separated from mixtures by streptavidin-coated magnetic bead. The collateral cleavage activity of CRISPR-Cas14a can be activated via the tag sequence on the target product. Consequently, the fluorophore quencher reporter can be activated by CRISPR-Cas14a, leading to the increasing response. The exploited universal bacterial diagnostic can distinguish six different bacteria strains with 1 cfu/mL or 1 aM sensitivity, which may provide new strategies to construct fast, accurate, cost-effective and sensitive diagnostic tools in environments with limited resources.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Bacterias/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética
7.
Biosens Bioelectron ; 176: 112953, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33418182

RESUMEN

The rapid identification of pathogenic microorganisms plays a crucial role in the timely diagnosis and treatment strategies during a global pandemic, especially in resource-limited area. Herein, we present a sensitive biosensor strategy depended on botulinum neurotoxin type A light chain (BoNT/A LC) activated complex assay (BACA). BoNT/A LC, the surrogate of BoNT/A which embodying the most potent biological poisons, could serve as an ultrasensitive signal reporter with high signal-to-noise ratio to avoid common strong background response, poor stability and low intensity of current biosensor methods. A nanoparticle hybridization system, involving specific binding probes that recognize pathogenic 16S rRNAs or SARS-CoV-2 gene site, was developed to measure double-stranded biotinylated target DNA containing a single-stranded overhang using Fluorescence Resonance Energy Transfer (FRET)-based assay and colorimetric method. The method is validated widely by six different bacteria strains and severe acute respiratory related coronavirus 2 (SARS-CoV-2) nucleic acid, demonstrating a single cell or 1 aM nucleic acid detecting sensitivity. This detection strategy offers a solution for general applications and has a great prospect to be a simple instrument-free colorimetric tool, especially when facing public health emergency.


Asunto(s)
Técnicas Biosensibles/métodos , Toxinas Botulínicas Tipo A , Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Pandemias , SARS-CoV-2/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Humanos , SARS-CoV-2/genética , Especificidad de la Especie
8.
Anal Chem ; 91(21): 14043-14048, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31577421

RESUMEN

Nanopore technology is promising for the next-generation of nucleic acid-based diagnosis. However, sequence reservation could still be hardly achieved in low-concentration. Herein, we propose a trypsin-activated catalysis reaction for amplified detection, which substantially improves the sensitivity of nanopore technique. The proposed trypsin-amplified nanopore amplified sandwich assay (tNASA) could contribute to a sensitivity approximately 100 000 times higher based on nucleic acid probe design. Remarkably, tNASA is capable of attomolar nucleic acid and single cell detection by using a miniaturized current amplifier without alignment algorithm. Also it allows 10 pathogenic species in serum to be accurately and robustly profiled, thus be utilized for the diagnosis of infectious diseases. tNASA may evolve the construction of nanopore techniques for nucleic acid detection and would facilitate its translation for pocket diagnosis and precision medicine.


Asunto(s)
Bacterias/aislamiento & purificación , Toxinas Bacterianas/genética , Secuenciación de Nanoporos , Ácidos Nucleicos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Tripsina/metabolismo , Algoritmos , Biocatálisis , Sondas Moleculares/química , Tripsina/química
9.
J Gen Appl Microbiol ; 63(5): 259-265, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28835594

RESUMEN

A gene (gkdA) (741 bp) encoding a putative protein of 247 amino acids was cloned from the Bacillus licheniformis SR01. The protein was expressed in Escherichia coli BL21 with a molecular mass estimated by SDS-PAGE of approximately 28.03 kDa and showed a calculating isoelectric point (pI) of 6.42. Structure analysis and function identification showed that the enzyme was a multifunctional glycosidase. Its specific activity was 0.013 U/µg. The recombinant glycosidase showed a maximum activity at 50°C and pH 7.0. It was very stable below 90°C and may have heat activation at higher temperatures. The relative residual activity was still more than 80% after 120 min at pH 5.0-10.0. The enzyme activity was inhibited by Cu2+, Fe2+, Ca2+, Mg2+, Co2+, Li+, SDS and EDTA, activated by Ca2+, and not affected by Mn2+ and K+. Under simulated stomach, and in vitro intestine, conditions, the enzyme retained 80%, and more than 100%, activity, respectively, after incubation for 90 min. The excellent properties of this enzyme, specifically its thermal stability and multifunctional abilities, give it potential application in the field of feed processing and other high-temperature processing industries.


Asunto(s)
Bacillus licheniformis/enzimología , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas Bacterianas/química , Clonación Molecular , Estabilidad de Enzimas/fisiología , Escherichia coli/genética , Glicósido Hidrolasas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA